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Abstract—The automation of an increasingly large number
of software engineering tasks is becoming possible thanks to
Machine Learning (ML). One foundational building block in
the application of ML to software artifacts is the representation
of these artifacts (e.g., source code or executable code) into a
form that is suitable for learning. Traditionally, researchers and
practitioners have relied on manually selected features, based
on expert knowledge, for the task at hand. Such knowledge is
sometimes imprecise and generally incomplete. To overcome this
limitation, many studies have leveraged representation learning,
delegating to ML itself the job of automatically devising suitable
representations and selections of the most relevant features. Yet,
in the context of Android problems, existing models are either
limited to coarse-grained whole-app level (e.g., apk2vec) or
conducted for one specific downstream task (e.g., smali2vec).
Thus, the produced representation may turn out to be unsuitable
for fine-grained tasks or cannot generalize beyond the task
that they have been trained on. Our work is part of a new
line of research that investigates effective, task-agnostic, and
fine-grained universal representations of bytecode to mitigate
both of these two limitations. Such representations aim to
capture information relevant to various low-level downstream
tasks (e.g., at the class-level). We are inspired by the field of
Natural Language Processing, where the problem of universal
representation was addressed by building Universal Language
Models, such as BERT, whose goal is to capture abstract semantic
information about sentences, in a way that is reusable for a

Manuscript received 2 December 2022; revised 4 August 2023;
accepted 23 August 2023. Date of publication 1 September 2023; date of
current version 17 October 2023. This research / project is supported by
the Fonds National de la Recherche (FNR), Luxembourg, under project
REPROCESS C21/IS/16344458, AFR PhD Project number 17046335. This
work was also supported in part by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2021R1A5A1021944 and 2021R1I1A3048013), and the National Research
Foundation, Singapore, and Cyber Security Agency of Singapore under its
National Cybersecurity Research and Development Programme, NCRP25-
P03-NCR-TAU. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore and Cyber Security Agency of
Singapore. Recommended for acceptance by M. Nagappan. (Corresponding
authors: Kisub Kim; Tiezhu Sun; Dongsun Kim.)

Tiezhu Sun, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein
are with the University of Luxembourg, 1359 Kirchberg, Luxembourg
(e-mail: tiezhu.sun@uni.lu; kevin.allix@uni.lu; tegawende.bissyande@uni.lu;
jacques.klein@uni.lu).

Kisub Kim, Xin Zhou, and David Lo are with Singapore Man-
agement University, Singapore 188065 (e-mail: kisubkim@smu.edu.sg;
davidlo@smu.edu.sg; xinzhou.2020@phdcs.smu.edu.sg).

Dongsun Kim is with Kyungpook National University, 41566 Daegu,
Republic of Korea (e-mail: darkrsw@gmail.com).

Digital Object Identifier 10.1109/TSE.2023.3310874

variety of tasks. We propose DexBERT, a BERT-like Language
Model dedicated to representing chunks of DEX bytecode, the
main binary format used in Android applications. We empirically
assess whether DexBERT is able to model the DEX language
and evaluate the suitability of our model in three distinct class-
level software engineering tasks: Malicious Code Localization,
Defect Prediction, and Component Type Classification. We also
experiment with strategies to deal with the problem of catering
to apps having vastly different sizes, and we demonstrate one
example of using our technique to investigate what information
is relevant to a given task.

Index Terms—Representation learning, Android app anal-
ysis, code representation, malicious code localization, defect
prediction.

I. INTRODUCTION

PRE-TRAINED models yielding general-purpose embed-
dings have been a recent highlight in AI advances, notably

in the research and practice of Natural Language Processing
(e.g., with BERT [1]). Building on these ideas, the program-
ming language and software engineering communities have at-
tempted similar ideas of learning vector representations for code
(e.g., CODE2VEC [2]) and other programming artifacts (e.g., bug
reports [3]). Unfortunately, these pre-trained models for code
embedding often do not generalize beyond the task they have
been trained on [4].

In the Android research landscape, many techniques have
been proposed to address app classification problems [5], [6],
[7], [8], [9], [10], [11], [12], most of which, however, can
only handle coarse-grained tasks (i.e., at the whole-app level).
Although there are a few works [13], [14] targeting some fine-
grained tasks at the class level, their learned representations
have also not been shown to generalize to other class-level tasks.

Therefore, despite the good performance exhibited by ex-
isting approaches, there is still a research gap to be filled
with the investigation of simultaneously fine-grained and
task-agnostic representation learning for Android applications.
Indeed, advances in this direction will help researchers and
practitioners who are conducting class-level tasks, such as ma-
licious code localization or app defect prediction, to achieve
state-of-the-art performance while reducing costs due to manual
feature engineering or repetitive pre-training computations for
multiple representation models.

Building a fine-grained task-agnostic model is, however,
challenging since it essentially requires to capture knowledge
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relevant to a variety of tasks altogether and at the low granular-
ity of the representation. A few studies have investigated and
built task-agnostic models in the field of software engineering.
CodeBERT [15] and apk2vec [16] are key representatives of
these models. On the one hand, while CodeBERT brings signif-
icant improvements, it cannot be directly used for representing
Android apps for two main reasons: (1) lack of source code in
apps and (2) limit of input elements. Even though it is techni-
cally feasible to apply it to the assembly language Smali, the
performance is unsatisfactory, as evidenced by our experiments
in Section VI-C. On the other hand, apk2vec successfully con-
structs the behavior profiles of apps and achieves significant ac-
curacy improvements while maintaining comparable efficiency.
However, despite apk2vec’s success in the app representation,
its granularity, and graph-based design still have limitations
[17], [18], [19], [20], [21]. Notably, apk2vec is designed to
handle only app-level tasks, while our proposed approach is
targeted at fine-grained tasks at the class-level.

Towards addressing limitations of existing representation
techniques (i.e., lack of a universal model for Android byte-
code at low granularity), we propose, in this paper, DexBERT,
a fine-grained and task-agnostic representation model for the
bytecode in Android app packages. The result of DexBERT
can be applied across various class-level downstream tasks
(e.g., malicious code localization, defect prediction, etc.). Our
approach first extracts features from Smali instructions (i.e.,
an assembly language for the Dalvik bytecode used by An-
droid’s Dalvik virtual machine). It then combines embeddings
of code fragments to build a model that can address various
class-level problems. Our pre-trained model can capture the
essential features and knowledge by first learning an accu-
rate general model of Android apps’ bytecode. The proposed
aggregation methods allow DexBERT to handle fine-grained
class-level tasks, making DexBERT capable of operating on
lower granularity of Android artifacts than other state-of-the-
art representation models.

To evaluate the effectiveness of DexBERT, we first conduct
a preliminary experiment to observe the feasibility of building
a general model of Android app code. This experiment mainly
focuses on pre-training BERT on Smali instructions to ensure
that the generated embeddings contain meaningful features for
various tasks. We observed clearly converging loss curves on
all the pre-training tasks, with the pre-trained model achieving
95.30% and 99.35% accuracy on the masked language model
and next sentence prediction tasks, respectively. Such perfor-
mances demonstrate that our model indeed learned meaningful
features and can be generalized to a variety of different tasks.

We further perform a comprehensive empirical evaluation to
measure the overall performance of DexBERT on three class-
level downstream tasks: 1) android malicious code localization,
2) android defect detection, and 3) component type classifi-
cation. Android malicious code localization is a task whose
goal is to identify the malicious parts of Android apps. Android
defect detection locates defective code to help developers im-
prove the security and robustness of Android apps. Component
Type Classification is a multi-class classification problem that
has a distinct character compared to the two tasks mentioned

above. This classification problem is introduced to provide
a more comprehensive evaluation of DexBERT’s universality.
Our experimental results show that DexBERT can localize mali-
cious code and detect defects with significant improvement over
current state-of-the-art approaches (74.93 and 6.33 percentage
points improvement for malicious code localization and defect
prediction, respectively) in terms of accuracy. DexBERT also
significantly outperforms other BERT-like baselines on the task
of Component Type Classification by a roughly 20 percentage
point increase in terms of F1 Score.

The contributions of our study are as follows:
• We propose a novel BERT-based pre-trained represen-

tation learning model for Android bytecode representa-
tion, named DexBERT. It can be used directly on various
class-level (i.e., finer-grained than existing app-level ap-
proaches) downstream analysis tasks by freezing parame-
ters of the pre-trained representation model when tuning
the prediction model for a specific downstream task.

• We propose aggregation techniques that overcome the lim-
itations with the size of the input of BERT.

• We conduct a comprehensive evaluation, showing that
DexBERT achieves promising performance on multi-
ple pre-training tasks and class-level Android down-
stream tasks.

• To ease replication, we share the dataset and source
code to the community at the following address:
https://github.com/Trustworthy-Software/DexBERT.

II. BACKGROUND AND MOTIVATION

A. Representational Model

Our approach, DexBERT, aims at building a task-agnostic
universal representation model for Android apps at low gran-
ularity. Universal representation models are trained on large
corpora to automatically capture general features that are rele-
vant to various downstream tasks without training a model from
scratch for each task. For example, BERT [1] has revolutionized
the representation problem of Natural Language Processing
(NLP). One advantage of BERT-like models is the strong sepa-
ration between the generic representation and any specific task.
To build a language model, BERT pre-training relies on two
fundamental tasks, Masked Language Model (MLM) and Next
Sentence Prediction (NSP), without manual labels. MLM forces
BERT to capture relationships between words, and NSP forces
BERT to capture relationships between sentences. With such a
mechanism, BERT can generate meaningful embeddings of the
input sentences. Universal models can also be useful in the field
of software engineering, where many tasks that take software
artifacts as input are investigated. CodeBERT [15] is one of the
successful universal models that is used by a number of studies
[22], [23], [24], [25] in various software engineering domains
with promising performance.

As the purpose of our approach, DexBERT, is to represent
the bytecode in Android apps with concise representations,
such as embedding vectors; we leverage and adapt the idea and
architecture of BERT [1] as well. While BERT, coming from
NLP, works with words and sequences of words (i.e., sentences

https://github.com/Trustworthy-Software/DexBERT
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or paragraphs), we disassemble Android apps into Smali code1.
We then regard the Smali code as a flow of tokens that can be
fed to a BERT-like model.

B. Downstream Tasks

Once a BERT-like model is pre-trained, it is able to output a
representation of its input. This representation can then be used
as an input to other models that can be trained (fine-tuning in
BERT terminology) for a specific downstream task. We eval-
uate our approach on three class-level Android-specific tasks:
malicious code localization, defect prediction, and component
type classification.

Precise malicious code localization not only helps to as-
sess the trustworthiness of existing app-level malware detec-
tion methods but also enables important applications such as
studying malware behavior and engineering malware signa-
tures. Malicious code localization becomes particularly useful
in the case of repackaged malware, as the major portion of apps’
code remains benign, with only a small portion relevant to the
attack [13].

Software defects are errors or bugs built into the software
due to programmers’ mistakes, such as memory overflows and
run-time exceptions [26], during the software design or devel-
opment process. These defects can raise serious reliability and
security concerns. Automatically finding such defects is thus an
important and active domain of research [14].

As an additional measure to assess DexBERT’s wide-ranging
applicability, we introduced component type classification, a
third task at the class level. This task, which involves multi-class
classification, serves as a contrast to the preceding two tasks
that focused on security-related binary classification, and aims
to provide a thorough evaluation of DexBERT’s universality in
different contexts.

In the Android context, these three tasks require sub-app level
representations (i.e., class-level) instead of whole-app level
representations (e.g., apk2vec [16]) since the tasks pinpoint a
specific location in an app. Note that whole-app level represen-
tations transform an app into an embedding vector rather than
transforming each element (e.g., class) of an app. Our approach
can take a subset of bytecode in an app, and thus it can represent
classes as embedding vectors. Theoretically, other class-level
tasks, beyond the three we identified, are expected to benefit
from DexBERT as well, if the corresponding datasets are well-
labeled and publicly available.

C. Motivation

As the population of Android apps is rapidly growing larger
and the number of relevant issues (e.g., productivity and secu-
rity problems) is increasing quickly, it is necessary to efficiently
address the issues of the Android ecosystem; for example, one
solution to multiple problems. However, most state-of-the-art
approaches focus on building a model for a particular issue,
such as Malware Detection (e.g., Drebin [27] and DexRay

1Smali is a popular disassembler for Android applications
(https://github.com/JesusFreke/smali).

[28]) or Malicious Code Localization (e.g., MKLDroid [13] and
Droidetec [11]), or Software Defect Prediction (e.g., smali2vec
[14] and SLDeep [29]).

Instead of devising a single individual solution for each of
those issues, there is value in investigating the possibility of
having one single universal model that is able to capture and
represent the relevant features and properties of application’s
code, which could be leveraged for a variety of tasks. Some
existing representation models generalize to a variety of prob-
lems, but target either a low granularity with source code (e.g.,
CodeBERT [15]) or entire Android applications (e.g., apk2vec
[16]). CodeBERT requires native source code (i.e., written in
programming languages), which is often not available for An-
droid apps. While decompilation of Java code is an option, it is,
however not always complete and is often significantly different
from real source code. Moreover, the design of CodeBERT
does not overcome the limitation with the number of 512 input
elements for Android apps (i.e., apps often contain more than
millions of tokens). In addition, most existing Android repre-
sentation approaches target the whole-app level (e.g., apk2vec
[16]), which makes it difficult to explore fine-grained details of
the problems.

Therefore, it would be a significant step forward if a rep-
resentation model can take bytecode of apps and support var-
ious tasks at fine-grained levels. The approach we propose,
DexBERT, does not require source code and is validated to
cater to class-level tasks. Meanwhile, we design an aggregation
method to overcome the limitation of the 512 input elements
in BERT-like models. For DexBERT users, they do not need
to pre-train again and only need to use the provided model
to generate features for their own APKs. Then, they can do
any class-level tasks they desire. Therefore, its reusability can
avoid training individual models for different tasks and save a
large amount of time and effort.

III. APPROACH

In this section, we first present the overview of DexBERT
workflow in Section III-A. Then, we illustrate details of
DexBERT in Section III-B, and we describe the applications
of representations learned by DexBERT on downstream tasks
in Section III-C.

A. Overview

DexBERT focuses on extracting features from Android ap-
plication Dalvik bytecode and targets fine-grained Android
tasks (i.e., at class-level). Our approach is clearly different
from apk2vec [16], which is a static analysis based multi-view
graph embedding framework for app-level Android tasks, and
CodeBERT, which is a bimodal pre-trained model for program-
ming language (PL) and natural language (NL) tasks. Specifi-
cally, DexBERT takes disassembled Smali code from Dalvik
bytecode as input and learns to extract corresponding repre-
sentations (e.g., the embedding of a class). Smali is a text
representation of Dalvik bytecode, in the same way, that as-
sembly code is a text representation of compiled code. Because
DexBERT supports various class-level tasks (while the original

https://github.com/JesusFreke/smali
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Fig. 1. Overview of a class embedding by DexBERT.

Fig. 2. Illustrations of DexBERT and pre-training loss function. “GT” is an abbreviation for “ground-truth”.

BERT is limited to relatively small inputs), there is a need to
combine, or aggregate the representations of several sequences
of instructions, or chunks, into one single representation that
covers the chosen input.

As shown in Fig. 1, representation (or embedding) of the
Smali Bytecode is learned by BERT during the pre-training
phase. This learned embedding can then be applied to class-
level Android downstream tasks. Specifically, we can easily
extract the Bytecode of an Android application. After disas-
sembling each Dalvik class, we obtain the Smali instructions.
This flow in Smali instructions (grouped in chunks) is fed
to the BERT model in order to pre-train it, i.e., to learn how
to represent Smali code. Then, to obtain the embedding of a
Smali class, we aggregate the learned DexBERT representa-
tion of each Smali instruction sequence present in the class.

B. DexBERT

We introduce the pipeline of DexBERT in Section III.B.1.
The mechanism of DexBERT pre-training is presented in Sec-
tion III.B.2. In Section III.B.3, we introduce the Auto-Encoder,
which is designed to reduce the dimensionality of the learned
representation while keeping the key information.

1) DexBERT: As an assembly language, the Smali code
disassembled from Dalvik bytecode is a sequence of instruc-
tions. Similar to the original BERT, we pre-train our model
on multiple pre-training tasks to force DexBERT to capture
general-purpose representations that can be used in various
downstream tasks.

Specifically, as shown in the left box in Fig. 2, regarding
each Smali instruction in each class as a text snippet we are
able to create instruction pairs (similar to sentence pairs in
original BERT) as input sequences. In each pair, two instruc-
tions are separated by a reserved token [SEP], and several
randomly selected tokens (or “words”) are masked. For the

masked language model, one of the two pre-training tasks of
the original BERT, the goal is to correctly predict the tokens
that are masked. The second original BERT pre-training task,
next sentence prediction, is turned here into next instruction
prediction, leveraging the pairs of instructions. In essence, this
task’s goal is to predict, given a pair of instructions, whether or
not the second instruction follows the first one.

2) Pre-Training: Pre-training plays a vital role in helping
DexBERT learn to generate meaningful embeddings. To ensure
that the learned embeddings have general-purpose, the pre-
training is supposed to be performed on multiple tasks simulta-
neously. As described, we adopt and adapt the two pre-training
tasks of the original BERT: ① masked language model and
② next sentence prediction as the main pre-training tasks.

In each pre-training iteration, the input sequence of instruc-
tions is fed into the BERT model, which generates a correspond-
ing sequence embedding (as shown in the left box in Fig. 2). The
sequence embedding is then taken as input for the pre-training
tasks. Each task is a simple neural network with a single fully
connected layer. As shown in the right box in Fig. 2, a loss value
is then calculated by comparing the output of each task head to
the automatically created ground-truth (i.e., randomly masked
tokens or binary label indicating whether the second statement
indeed follows the first one or not). The model weights of
connections between neurons are adjusted to minimize the total
loss value (i.e., the sum of all loss values for pre-training tasks)
based on the back-propagation algorithm [30]. Note that the pre-
training tasks are only designed to help the BERT model learn
meaningful features of input sequences.

3) Auto-Encoder: Even though the two aforementioned pre-
training tasks could work well on Smali instructions, the
dimensionality (i.e., 512× 768, which is defined as the mul-
tiplication of token number in each input sequence N and the
dimension of the learned embedding vector H) of the generated
representation for each sequence is quite large. Since there are
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Fig. 3. Illustrations of three embedding aggregation methods and fine-tuning of downstream tasks.

usually hundreds or thousands of statements in a Smali class
that need to be embedded, the dimensionality of the learned
embeddings should be reduced before deployment to down-
stream tasks while preserving their key information. In common
practice for BERT-like models, the first state vector (of size 768)
of the learned embedding is often used for this purpose. In our
case, we add a third pre-training task, an Auto-Encoder, whose
goal is to find a smaller more more efficient representation.

A smaller representation is necessary primarily because
APKs consist of a significantly larger number of tokens com-
pared to typical textual documents and code files. We provide a
comparative analysis on token sequence length in a single file
across three different data formats - textual documents (Paired
CMU Book Summary [31]), code files (Devign [32]), and APKs
(DexRay [28]), the number of BERT tokens in each dataset,
denoted as [Mean]±[Deviation]. Specifically, the Paired CMU
Book Summary has 1148.62±933.97 tokens, the Devign dataset
contains 615.46±41 917.54 tokens, while the DexRay dataset
contains a considerable 929.39K±11.50M tokens. This sub-
stantial quantity difference in tokens for APKs necessitates the
effort to achieve as compact an embedding as possible for a
given token sequence of Smali instructions.

AutoEncoder [33] is an artificial neural network that can
learn efficient small-sized embedding of unlabeled data. It is
typically used for dimensionality reduction by training the net-
work to ignore the “noise”. The basic architecture of an Auto-
Encoder usually consists of an Encoder for embedding learning
and a Decoder for input regenerating as shown in the left box in
Fig. 2. During the training process, the embedding is validated
and refined by attempting to regenerate the input from the
embedding, essentially trying to build the smallest complete
representation of its input.

The encoder in our approach consists of two fully connected
layers with 512 and 128 neurons, respectively. Symmetrically,
the decoder consists of two fully connected layers with 128
and 512 neurons, respectively. The sequence embedding (with
the size of 512× 768) learned from BERT is both the input of
the Encoder and the output target of the Decoder in the pre-
training process. After comparative experiments, we opted for
a hidden embedding with size 128 as the final representation
of the original instruction sequence. We provide an analysis
of different embedding sizes in Section VI-A. Compared with
the raw BERT embedding, the dimension of the final sequence
embedding is 3072 times smaller, from 512× 768 to 128.
Consequently, in Fig. 2, the size of Vector 1, which is the

embedding of Instruction Sequence 1 yielded by the Encoder,
is 128.

C. Class-Level Prediction Model

In order to validate the effectiveness of learned DexBERT
representation, we apply it to three class-level Android analysis
tasks. To perform these class-level tasks, we need an efficient
representation for each class, and we thus need a method to
aggregate the embeddings of the instruction sequences of each
class into one single embedding. We introduce this method in
Section III.C.1. We then present the details of the prediction
model in Section III.C.2.

1) Aggregation of Instruction Embedding: The represen-
tations learned from DexBERT are for instruction sequences.
Usually, each Smali class consists of many methods, each of
which contains a certain, often large, number of statements.
The number of sequence vectors in each class is indeterminate,
while the shape of the input to the class-level prediction model
(neural network) is supposed to be fixed. Specifically, within
each class, there are many sequence embedding vectors with a
size of 128, which are expected to be combined into one single
vector. Thus, embedding aggregation is required to obtain the
final class-level representation.

We primarily have three reasons to solve the long instruction
sequence problem by splitting a Smali class into snippets
and aggregate the learned snippet embedding into one class
embedding. First, Smali instructions are individual commands
performing specific operations in the Android run-time environ-
ment. Although they often appear in sequences, each Smali
instruction operates largely independently, not necessarily bear-
ing the kind of interdependence seen in words within natural
language sentences. Second, the class representation, which
aggregates the instruction embeddings, retains a sense of the
overall structure and function of the class while being context-
aware. Last, while there might be some loss of context when
splitting long sequences, we believe the trade-off between com-
putational efficiency and a minor potential loss of context is
justified. To give a quantified measure of this trade-off, let’s
consider the GPU memory required. Doubling the input length
limit for a BERT model would necessitate four times the initial
GPU memory, a demand that most standard devices cannot
meet, particularly for even longer sequences. However, the high
memory cost can be avoided without significant performance
loss if we perform an average of 2.69 splits on long sequences
in the adopted datasets, as shown in our experiments.
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While it would be possible to leverage another step of rep-
resentation learning to devise a strategy to aggregate several
representations, we instead opt for less computationally expen-
sive approaches. In order to adapt to the variability of vector
numbers in different Smali classes, as shown in Fig. 3, we
propose to aggregate these sequence embedding vectors of size
128 into one single vector of size 128 by performing simple
element-wise average, element-wise addition, or random selec-
tion. Another method we investigate is a general approach to
vector reshaping in computer vision: concatenation & bilin-
ear resizing. Specifically, we first concatenate the embedding
vectors into a long vector and resize it with the bilinear inter-
polation algorithm [34]. We investigate these four methods in
Section V-E and show that these simple methods are effective.

2) Prediction Model: As shown in the right box in Fig. 3,
after embedding aggregation, we finally obtain one embedding
vector for each Smali class. The last step is to apply the
learned embedding to downstream tasks. Typically, this can be
done by feeding the embeddings to another independent neural
network that can be trained to a specific task. In the original
BERT, they only add one additional layer following the pre-
trained model for each downstream task.

In our approach, we design a simple model architecture
with only three fully connected layers of neural network as
the task-specific model and freeze the parameters of the pre-
trained DexBERT model when tuning for specific tasks. The
computational cost in training downstream tasks is significantly
decreased by only tuning parameters of the task-specific model.
Specifically, the parameter number of the task-specific model is
10.4K, which is almost negligible compared with 459.35M of
the pre-trained DexBERT model.

The input of the task-specific model is the aggregated vector
of class embedding, as shown in Fig. 3. The task-specific model
for malicious code localization predicts whether what a given
class contains is malicious or not. Similarly, for defect detec-
tion, the task-specific model predicts if a given class contains
defective code. For component type classification, the task-
specific model predicts to which component type the given class
belongs. The details of each task-specific setup are presented in
Section IV-C.

IV. STUDY DESIGN

In this section, we first overview the research questions to
investigate in Section IV-A. Then, details about dataset and
empirical setup are presented in Sections IV-B and IV-C. We
provide evaluation results and answer the research questions in
Section V.

A. Research Questions

In this paper, we consider the following six main research
questions:

• RQ1: Can DexBERT accurately model Smali bytecode?
• RQ2: How effective is the DexBERT representation for

the task of Malicious Code Localization?
• RQ3: How effective is the DexBERT representation for

the task of Defect Detection?

• RQ4: How effective is the DexBERT representation for
the task of Component Type Classification?

• RQ5: What are the impacts of different aggregation meth-
ods of instruction embeddings?

• RQ6: Can DexBERT work with subsets of instructions?

B. Dataset

In this work, we rely on four different datasets that we present
in this section.

1) Dataset for Pre-Training: With DexBERT, we target
a general-purpose representation for various Android analysis
tasks. To obtain a representative sampling of the diverse land-
scape of android apps, we opted to leverage the dataset of a re-
cent work in Android malware detection. One thousand apps—
malware or benign—are randomly selected from the dataset
used to evaluate DexRay [28], a work that collected more than
158 000 apps from the AndroZoo dataset [35].

Class de-duplication was performed in order to include as
much diversity as possible without letting the total number
of instructions explode. After removing duplicate classes, our
selection of APKs results in over 35 million Smali instruc-
tions, from which we obtained 556 million tokens. This is
comparable to the scale of BooksCorpus [36], one of the pre-
training datasets used in the original BERT, which consists of
800 million tokens.

Despite the pre-training dataset of DexBERT being smaller
than the original BERT, its sufficiency is supported by two
factors. Firstly, Smali, being an assembly language, possesses
a simpler structure and a significantly smaller set of tokens
compared to natural languages and high-level programming
languages, implying that a smaller dataset is enough to capture
its essential features. Secondly, the efficiency of the dataset is
evaluated based on DexBERT’s performance in downstream
tasks which use APKs from distinct sources than the pre-
training dataset. The superior performance of DexBERT over
baseline models in these tasks confirms the adequacy of the pre-
training dataset.

Based on the Smali instructions in the dataset, we generated
a WordPiece [37] vocabulary of 10 000 tokens for DexBERT,
which is only one-third the size of the original BERT vocab-
ulary. The WordPiece model employs a subword tokenization
method to manage extensive vocabularies and handle rare and
unknown words. It breaks down words into smaller units, ef-
fectively addressing out-of-vocabulary words.

2) Dataset for Malicious Code Localization: RQ2 deals
with Malicious Code Localization, i.e., finding what part(s) of
a given malware contains malicious code. At least two existing
works have tackled this challenging problem for Android Mal-
ware and thus have acquired a suitable dataset with ground-truth
labels. In Mystique [38], Meng et al. constructed a dataset of
10 000 auto-generated malware, with malicious/benign labels
for each class. However, almost all of the code in these gener-
ated APKs is either malicious or from commonly used libraries
(such as android.support), and thus may not be represen-
tative of existing apps, nor of the diversity of Android apps.
More recently, in MKLDroid [13], Narayanan et al. randomly
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selected 3000 apps from the Mystique dataset and piggybacked
the malicious parts into existing, real-world benign apps from
Google Play, resulting in a dataset they named MYST. Although
still a little far from the real-world scenario, the repackaged
malware in the MYST dataset contains both malicious and
benign classes, which can support a class-level malicious code
localization task. We thus decide to rely on the MYST dataset
to conduct our experiments related to RQ2. Note that, to the
best of our knowledge, no fully labeled dataset of real-world
malware exists for the task of malicious code localization for
Android. Note also that in our work, we choose MKLDroid
as a baseline work, enabling us to directly compare DexBERT
against MKLDroid.

Despite the challenges in acquiring labeled real-world mal-
ware, we remained determined to evaluate DexBERT’s per-
formance in real-world scenarios. Ultimately, we succeeded
in constructing a dataset that, albeit not extensive, contains
labeled real-world malicious classes, thus broadening our eval-
uation scope. Specifically, we found 46 apps in the Difuzer
[39] dataset, where the locations of a specific malicious be-
havior, namely the logic bomb, have been manually labeled.
This allows us to obtain labels of malicious classes and thereby
assess DexBERT’s ability to localize malicious code in real-
world applications. In addition, the authors of Difuzer provided
more apps from their subsequent work, and we were able to
successfully download and process 88 apks in total.

Given that each APK in the Difuzer dataset only has one class
labeled as containing a logic bomb, and the malicious or benign
nature of other classes is unknown, we are only able to utilize
88 malicious classes from these 88 real-world APKs for our
extended evaluation. To facilitate a more comprehensive eval-
uation process, we constructed a dataset with additional APKs.
The training set comprises three sources: 50 Difuzer APKs with
logic bombs, 50 benign APKs from the DexRay dataset [28],
and 100 APKs from MYST dataset to augment the dataset size.
Please note that we selectively choose a portion of the benign
classes at random to prevent a significant data imbalance, as
the initial number of benign classes is much larger than that of
malicious classes. As a result, we acquired 1929 benign classes
and 425 malicious classes, including 50 from Difuzer APKs,
for fine-tuning the classifier. The evaluation set, aimed at testing
DexBERT on real-world APKs, consists solely of the remaining
38 APKs with logic bombs from Difuzer and 50 benign APKs
from DexRay. We ended up with 95 benign classes (almost
two per benign apks) and 38 malicious classes containing logic
bombs. Please be aware that all the aforementioned designs aim
to make the constructed data suitable for deep learning model
training, while ensuring that there is no overlap between the
training and evaluation sets.

3) Dataset for App Defect Detection: As another important
class-level Android analysis task, app defect detection is the
subject of RQ3. Dong et al. proposed smali2vec as a deep
neural network based approach to detect application defects
and released a dataset containing more than 92K Smali class
files collected from ten Android app projects in over fifty ver-
sions. For the convenience of labeling, they collected these
APKs from GitHub based on three project selection criteria:

1) the number of versions is greater than 20; 2) the package size
is greater than 500 KB; and 3) a large number of commits and of
contributors. The defective Smali files are located and labeled
with Checkmarx [40], a widely used commercial static source
code analysis tool. Finally, each Smali class in the dataset
has a label indicating whether it is defective or not. We choose
smali2vec as our dataset for app defect detection to enable
comparison with their smali2vec approach built specifically
for defect detection.

4) Dataset for Component Type Classification: To further
evaluate the universality of DexBERT, we introduced a third
class-level task called Component Type Classification. This
task, distinctly different from the previous two, is designed to
provide a comprehensive assessment of DexBERT’s applica-
bility across various scenarios. In the Android framework, four
primary components exist, namely Activities, Services, Broad-
cast Receivers, and Content Providers. These are fundamental
building blocks of an Android application and are declared
in an application’s manifest file (AndroidManifest.xml).
Therefore, we can readily obtain labels for these four types of
component classes and formulate a high-quality dataset for this
task. Note that this task was designed solely to demonstrate
the universality of DexBERT; It is selected due to the different
nature of this task from other two downstream tasks and the
ease and speed with which ground truth can be obtained. We
randomly selected 1000 real-world APKs from the AndroZoo
repository [35], from which we extracted 3406 component
classes with accurate labels. We used 75% of this data for
training and the remaining 25% for testing.

C. Empirical Setup

1) Pre-Training: Based on the typical BERT [1] design, we
simplify the model architecture of DexBERT to a certain extent
to reduce the computational cost. Indeed, while the dimen-
sion of intermediate layers in the position-wise feed-forward
network was originally defined as H × 4, where H is set to
768 by default, as mentioned in Section III.B.3, we reduce this
dimension to H × 3, i.e., from 3072 to 2304. The number of
hidden layers and heads in the multi-head attention layers are
set to 8 instead of 12. With these simplifications, the number of
floating-point operations (FLOPs, indicating the computational
complexity of the model) is reduced by 43.9%, from 44.05G to
24.72G. Meanwhile, the number of model parameters is only
decreased by 7.7%, from 497.45M to 459.35M. Thus we keep
as many as possible of the model parameters while reducing
the computational cost, with the goal of preserving the learning
ability of the model as much as possible.

The batch size is set to 72, and the learning rate is set to
1e−4. Following the reference implementation2 we leveraged,
we select the Adam optimizer [41]. We adopt the Cross-Entropy
loss function3 for both the masked words prediction task and
the next sentence prediction task, and the Mean Squared Error
(MSE) loss function4 for the Auto-Encoder task. Particularly,

2https://github.com/dhlee347/pytorchic-bert
3https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
4https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html

https://github.com/dhlee347/pytorchic-bert
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
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Fig. 4. Loss curves of three pre-training tasks. The X axis represents the training iteration index and Y axis represents the loss value.

the MSE Loss is a criterion that measures the squared L2 norm
between each element in the input x and target y. Thus, the loss
value of this task could also be regarded as an evaluation metric
for the Auto-Encoder task.

The pre-training of DexBERT on 556 million tokens for 40
epochs took about 10 days on 2 Tesla V100 GPUs (each with
32G memory). However, it is important to note that DexBERT
users do not need to pre-train the model from scratch. They
can directly use the pre-trained model we provide for their own
Android analysis tasks.

2) Malicious Code Localization: As discussed, malicious
code localization is a difficult and under-explored problem.
Therefore, there are few widely recognized approaches and
benchmark datasets available. To the best of our knowledge,
Narayanan et al. provided the first well-labeled dataset that
comes close to real-world practical needs, to evaluate their
multi-view context-aware approach MKLDroid [13] for mali-
cious code localization.

In order to fairly compare with this baseline work, we follow
the same validation strategy, i.e., 2000 APKs for fine-tuning
and the remaining 1000 APKs for evaluation. We use 3-fold
cross validation to ensure the reliability of the results. The
prediction model consists of 3 fully connected layers, of with
128, 64, and 32 neurons, respectively. The output layer consists
of two neurons that are used to predict the probabilities for a
class being either malicious or benign. We leverage the best
aggregation method (i.e., element-wise addition) found in RQ5.
When fine-tuning for this task, we use the Cross-Entropy loss
function and the Adam optimizer. With a batch size of 256,
we train the prediction model for 40 epochs. For evaluation
metrics, we adopt Precision, Recall, False Positive Rate (FPR),
and False Negative Rate (FNR), following the same metrics as
the baseline work, MKLDroid, for easy comparison. We further
report F1 Scores as the overall metric.

3) App Defect Detection: Similar to malicious code lo-
calization, app defect detection is a relatively new challenge,
only addressed by a small number of works in the litera-
ture. Particularly, Dong et al. proposed a DNN-based approach
smali2vec [14] targeting Android applications and released
a benchmark dataset containing more than 92K Smali class

files. The classifier of smali2vec has 810 600 weight pa-
rameters across 10 layers, each of which has 300 neurons. In
contrast, our model only comprises a total of 10 304 weight
parameters spanning three simple layers with sizes of 128, 64,
and 32.

In this work, we follow their Within-Project Defect Predic-
tion (WPDP) strategy using 5-fold cross-validation to compare
their approach with ours. They provide an AUC score for each
project, and report their mean value as the final evaluation
metric. In addition, we also report the weighted average score
to cater to the significant size variations among projects. For
this task, we adopt the same model architecture, aggregation
method, loss function, and training strategy as for the malicious
code localization task.

4) Component Type Classification: The majority of the
empirical settings for the component type classification task
are identical to those used in malicious code localization, with
the exception of the number of neurons in the output layer of
the prediction model. In this task, the classifier contains four
neurons, instead of two, to output the probabilities for the four
different component types.

V. EXPERIMENTAL RESULTS

In this section, we present the evaluation results of DexBERT,
and we answer our six research questions.

A. RQ1: Can DexBERT Accurately Model Smali Bytecode?

With this first RQ, we assess whether or not DexBERT is
able to learn from Smali bytecode and build an accurate model
of Smali bytecode as used in Android apps. To that end, we
report the loss curves of the three pre-training tasks, presented
in Sections III.B.2 and III.B.3. These loss curves are shown in
Fig. 4, where the X axis represents the training iterations (i.e.,
batches).

Two elements allow us to confidently conclude that
DexBERT indeed can learn an accurate model of Smali
bytecode. First, the loss for all three pre-training tasks rapidly
drops and is already very low after being fed just a small
portion of our pre-training dataset, suggesting that our dataset
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TABLE I
EVALUATION OF PRE-TRAINING TASKS. THE MASKED

WORDS PREDICTION TASK IS EVALUATED ON 2 037 400
TOKENS AND THE NEXT SENTENCE PREDICTION TASK IS

EVALUATED ON 101 870 INSTRUCTION PAIRS

Task Accuracy # of Samples
Masked Words Prediction 95.30% 2 037 400
Next Sentence Prediction 99.35% 101 870

is more than large enough for our purpose. Second, continuing
the pre-training process results in even lower loss and does
not generate random fluctuations, suggesting that the model
learned is not contradicted by new pieces of Smali bytecode
and indeed converges.

As mentioned in Section IV.C.1, the MSE loss could also
be regarded as an evaluation metric, and its loss value in the
third curve in Fig. 4 approaches zero late in the training pro-
cess, indicating that the Auto-Encoder is able to reconstruct
the given input vector of DexBERT embedding with minimal
error. Therefore, the output vector of Encoder (i.e., Hidden
Embedding in Fig. 2) preserves the key information of the
original DexBERT representation, which is required for the
representation reconstruction by Decoder.

In order to further evaluate the other two pre-training tasks,
we created an evaluation set containing 2 037 400 masked
tokens for the masked words prediction task and 101 870 in-
struction pairs for next sentence prediction task. We calculate
accuracy on the evaluation set as a metric to further evaluate
the performance of DexBERT on these two tasks.

Given the initial imbalanced distribution of each token and
the randomness of our selection process, the distribution of
masked tokens was imbalanced. Common characters, strings,
or variables such as slash “/” (15.47%), comma “,” (6.32%),
“v0” (1.83%), “object” (1.73%), and “lcom” (1.67%) were
most frequently masked. Nevertheless, less common characters
(< 1.00%) still accounted for 42.69% of the masked tokens.
As shown in Table I, with an accuracy of 95.30% on over two
million predictions, we believe DexBERT’s performance in the
MLM task is robust. Regarding the NSP task, the distribution
of positive and negative samples was well balanced; positive
samples constituted 49.81% of the total samples, and negative
samples made up the remaining 50.19%. DexBERT achieved
a near-perfect accuracy of 99.35% on over 100K instruction
pairs. This suggests that DexBERT was able to learn accurate
features for the NSP task. The high accuracy of these two
tasks demonstrates that the learned representations contain key
features of the input instruction sequences leading to correct
predictions.

RQ1 Answer: DexBERT can learn an accurate model
of Smali bytecode.

B. RQ2: How Effective Is the DexBERT Representation for
the Task of Malicious Code Localization?

In this section, we investigate the performance of DexBERT
on the malicious code localization task and compare it with

TABLE II
PERFORMANCE OF MALICIOUS CODE LOCALIZATION ON THE MYST

DATASET

Approach F1 Score Precision Recall FNR FPR
MKLDroid 0.2488 0.1434 0.9400 0.0500 0.1700
smali2vec 0.9916 0.9880 0.9954 0.0046 0.0046

DexBERT-m 0.5749 0.4034 1.0000 0.0000 0.4847
DexBERT 0.9981 0.9983 0.9979 0.0021 0.0006

the MKLDroid baseline work [13] on their evaluation dataset.
Following their experimental setup, we fine-tune DexBERT to
output, for each class of a given app, a maliciousness score,
or m-score for short. MKLDroid was evaluated with a beam
search strategy, with a width of 10. In Table II, we show MKL-
Droid performance metrics as reported in the MKLDroid paper
[13], followed by the performance metrics of DexBERT (Row
DexBERT-m), also computed with a beam search of width 10.

Additionally, we perform an experiment where we evaluate
DexBERT without beam search, where each class is predicted
as malicious if the m-score is above a threshold of 0.5 or benign
otherwise. The performance metrics for this experience are
reported in the last line of Table II. In effect, when evaluated
in the same conditions as MKLDroid, DexBERT significantly
outperforms MKLDroid with an F1 Score 0.9981 on the MYST
dataset. Therefore, DexBERT does not need beam search at all
and achieves excellent performance when classifying each class
independently. Furthermore, we also include smali2vec [14]
as an additional baseline, which, although it achieves fairly
good performance, fails to outperform DexBERT.

As noted in Section IV.B.2, we expanded our evaluation of
DexBERT on real-world Android applications. Employing our
dataset constructed from Difuzer apps, i.e., Difuzer Extension
dataset, DexBERT achieved a notable F1 Score of 0.9048 in
identifying malicious classes within real-world APKs. Further,
it achieved a commendable F1 Score of 0.9560 in predicting
benign classes, thereby eliminating our concerns that data im-
balance might negatively impact the evaluation.

RQ2 Answer: DexBERT significantly outperforms
MKLDroid on the task of malicious code localiza-
tion when evaluated in the same conditions. In ad-
dition, DexBERT can achieve vastly superior results
when classifying each class independently. Further-
more, DexBERT also show its potential on localizing
malicious classes within real-world Android apps.

C. RQ3: How Effective Is the DexBERT Representation for
the Task of Defect Detection?

In this section, we investigate the performance of DexBERT
on the task of app defect detection, and we compare it against
the baseline work, smali2vec [14]. The performance of
smali2vec5 on 10 Android projects is shown in Table III,
where the # of classes represents the number of Smali
classes in each project.

5as reported in the smali2vec paper [14]
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TABLE III
PERFORMANCE OF APP DEFECT DETECTION

Project AnkiDroid BankDroid BoardGame Chess ConnectBot Andlytics FBreader K9Mail Wikipedia Yaaic Average Weighted Average
# of classes 14767 12372 1634 5005 3865 5305 9883 11857 18883 974 Score AUC Score
smali2vec 0.7914 0.7967 0.8887 0.8481 0.9516 0.834 0.8932 0.7655 0.8922 0.9371 0.8598 0.8399

DexBERT 0.9572 0.9363 0.7691 0.9125 0.8517 0.9248 0.9378 0.8674 0.8587 0.8764 0.8892 0.9032

TABLE IV
COMPARISON OF F1 SCORE AMONG VARIOUS BERT-LIKE BASELINES FOR

FOUR COMPONENT CLASSES

Method Activity Service BroadcastReceiver ContentProvider Average
BERT 0.8272 0.7642 0.5673 0.9091 0.7669

CodeBERT 0.917 0.5381 0.8756 0.8468 0.7943
DexBERT(woPT) 0.7402 0.5850 0.7660 0.8947 0.7465

DexBERT 0.9780 0.9117 0.9600 0.9756 0.9563

Using our DexBERT representation, we fine-tune a model to
predict the likelihood that a given class is defective.

As shown in Table III, DexBERT outperforms smali2vec
on 6 out of 10 projects and achieves a weighted AUC score of
90.32%, which is a 6.33 percentage points improvement over
smali2vec.

RQ3 Answer: DexBERT slightly outperforms
smali2vec for the task of app defect detection.

D. RQ4: How Effective Is the DexBERT Representation for
the Task of Component Type Classification?

In this section, we explore DexBERT’s performance on the
task of component type classification task, aiming to further
examine its universal applicability across diverse application
scenarios. We contrast DexBERT’s performance against other
BERT-like models, specifically BERT [1], CodeBERT [15], and
DexBERT without pre-training. Similar to the settings for the
malicious code localization task, we fine-tune a classifier to pre-
dict a given class’s component type. Given that other BERT-like
baselines lack an AutoEncoder module for further reduction of
embedding dimensionality, we use the first state vector (size
768) of the embedding for all comparative experiments.

As Table IV illustrates, DexBERT excels in predicting all
four types of component classes. On average, DexBERT’s per-
formance surpasses all baselines by a significant margin, ex-
hibiting a roughly 20 percentage point increase in terms of F1
Score. This reiterates DexBERT’s effectiveness in representing
Smali instructions in Android and, validates the universality
of DexBERT.

RQ4 Answer: DexBERT significantly outperforms
baselines for the task of component type classifica-
tion which differs from first two tasks that focused on
security-related properties, demonstrating its versatility
across various application scenarios.

E. RQ5: What Are the Impacts of Different Aggregation Meth-
ods of Instruction Embeddings?

In this section, we investigate the impact of the four em-
bedding aggregation methods (i.e., element-wise addition, ran-
dom selection, averaging and concatenation & bilinear resizing,

TABLE V
COMPARISON OF DIFFERENT AGGREGATION METHODS ON THREE

DOWNSTREAM TASKS: MALICIOUS CODE LOCALIZATION (MCL), DEFECT

DETECTION (DD), AND COMPONENT TYPE CLASSIFICATION (CTC)

Method MCL@F1 Score DD@AUC Score CTC@F1 Score
Addition 0.9989 0.9064 0.9563
Random 0.9982 0.8553 0.8898
Average 0.9916 0.8712 0.9442

Concat&Resize 0.9979 0.8508 0.7491

cf. Section III.C.1). These techniques were initially leveraged
to aggregate token embeddings in BERT [1] and other deep
learning approaches [28]. From our point of view, the output
features from BERT and the AutoEncoder of DexBERT are
essentially similar in nature. Each state vector of BERT embed-
ding is a high-level abstract feature of the corresponding token.
Similarly, each output vector of Auto-Encoder is a high-level
abstract feature vector of the corresponding token sequence.
Therefore, if it’s plausible to aggregate token embeddings by
addition or the other three techniques, it should also be plausible
to aggregate sequence embeddings in a similar manner.

We conduct comparative experiments based on three down-
stream tasks to evaluate to what extent DexBERT is sensitive
to the aggregation method. As shown in Table V, on the ma-
licious code localization task, performance metrics for all four
methods are very close, with no significant differences among
them. For the other two downstream tasks, we note that the
differences are more significant than for the task of malicious
code localization. Despite all four aggregation methods yielding
an acceptable performance, element-wise addition is the best
performer, achieving the highest metric scores on both tasks.

RQ5 Answer: All four proposed aggregation methods
are effective on all the three downstream tasks. Element-
wise addition achieves the best performance on both
tasks.

F. RQ6: Can DexBERT Work With Subsets of Instructions?

In the previous RQs, we demonstrated the effectiveness of
DexBERT when using the entire Smali bytecode. Represent-
ing Smali bytecode with DexBERT can be computationally
expensive, given the very large number of instructions an app
(or even a class) can contain. With this RQ, we investigate the
ability of DexBERT to work with subsets of instructions, hence
reducing the number of pieces of code to represent and reducing
the need for aggregation.

We postulate that API invocations are the instructions that
carry the most semantics information, and thus conduct an
experiment where we pre-filter the flow of Smali bytecode to
keep only API calls. Based on the statistics on our pre-training
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TABLE VI
COMPARATIVE ANALYSIS OF FULL INSTRUCTIONS VS API CALLS FOR

MALICIOUS CODE LOCALIZATION (MCL) AND COMPONENT TYPE

CLASSIFICATION (CTC). ‘‘AVG TIME’’ MEANS THE AVERAGE INFERENCE

TIME PER CLASS

Method MCL@F1 Score CTC@F1 Score Avg Time
Full Instructions 0.9981 0.9563 0.00768s

API Call 0.9932 0.8779 0.00073s

dataset, API instructions constitute approximately 17.27% of
the total instructions. We re-use the pre-trained model built with
the complete flow of instructions (cf. RQ1), but we fine-tune
a dedicated model with filtered instructions only. Since many
classes in some projects in the dataset for defect detection do
not have API calls (some concrete examples are included in our
replication package), which would result in empty representa-
tions, we only consider the tasks of malicious code localization
and Component Type Classification.

As shown in Table VI, while the performance of DexBERT
is slightly higher with all instructions, DexBERT still performs
well with API calls solely. Computationally, however, working
with API calls is one order of magnitude faster. As for the
total execution time, we take the evaluation of malicious code
localization task as an example here. With full instructions,
we require approximately 1.9 hours to generate the DexBERT
features for all 911,724 classes. Conversely, with API calls, we
only need about 11 minutes to generate all feature vectors.

RQ6 Answer: When compatible with the downstream
task, DexBERT is also fairly effective and fast when
considering API calls only.

VI. DISCUSSION

In this section, we begin with an ablation study examining
the impact of DexBERT’s embedding size on downstream tasks,
and an ablation study assessing the effectiveness of the two
pre-training tasks. Following that, we compare the performance
of various BERT-like baselines across three different down-
stream tasks. Then, we share some insights about the proposed
DexBERT for Android representation. Next, we discuss some
potential threats to validity of the proposed approach. Finally,
we introduce some future works which are worth studying next.

A. Ablation Study on DexBERT Embedding Size

As detailed in Section III.B.3, Android application scenarios
require a smaller embedding due to the considerably larger
token quantities compared to typical textual documents and
code files. To find a reasonable trade-off between model com-
putation cost and performance, we conducted an ablation study
exploring the impact of DexBERT embedding size on the three
downstream tasks. The experiments contain three different sizes
for the hidden embedding of the AutoEncoder, specifically 256,
128, and 64. Additionally, we evaluated the performance by
directly utilizing the first state vector of the raw DexBERT
embedding, which has a size of 768, without applying any
dimension reduction from the AutoEncoder.

TABLE VII
ABLATION STUDY ON THE IMPACT OF DEXBERT EMBEDDING SIZE

Size MCL@F1 Score DD@AUC Score DD@F1 Score CTC@F1 Score
768 0.9999 0.9699 0.8887 0.9563
256 0.9995 0.9336 0.8029 0.9246
128 0.9981 0.9032 0.7542 0.9202
64 0.9813 0.8472 0.6693 0.9007

TABLE VIII
COMPARISON OF F1 SCORES AMONG VARIOUS

BERT-LIKE BASELINES FOR THREE TASKS: MALICIOUS

CODE LOCALIZATION (MCL), DEFECT DETECTION (DD),
AND COMPONENT TYPE CLASSIFICATION (CTC).

DEXBERT(WOPT) INDICATES DEXBERT WITHOUT

PRE-TRAINING

Models MCL DD CC
BERT 0.9182 0.66851 0.7669

CodeBERT 0.9985 0.64775 0.7943
DexBERT(wo-PreT) 0.9961 0.74381 0.3028

DexBERT 0.9999 0.8725 0.9563

TABLE IX
COMPARISON OF F1 SCORES ON THREE DOWNSTREAM

TASKS BASED ON DIFFERENT PRE-TRAINING TASK

DESIGNS FOR: MALICIOUS CODE LOCALIZATION (MCL),
DEFECT DETECTION (DD), AND COMPONENT TYPE

CLASSIFICATION (CTC)

Pre-Training Designs MCL DD CTC
Only MLM 0.9987 0.8055 0.8827
Only NSP 0.6547 0.5331 0.5491

MLM & NSP 0.9999 0.8725 0.9563

Table VII reveals that in the task of Malicious Code Local-
ization, a decrease in vector size does not lead to a significant
loss in the performance, until the size is reduced to 128. Hence,
we concluded that 128 is the optimal size for this task.

As for the tasks of Defect Detection and Component Type
Classification, the experimental results demonstrate that a larger
embedding size resulted in a considerable improvement in per-
formance. However, a size of 128 also offered a solid trade-off
for these two tasks, supporting satisfactory performance with
AUC score exceeding 0.9. Please be aware that the choice to
use the AUC score for defect detection was made in order to
maintain consistency with the metric employed by the primary
baseline for this task, namely, smali2vec [14]. To be con-
sistent with the other two tasks, we have also included the F1
Score for this task in Table VII.

B. Ablation Study on Pre-Training Tasks

To better understand the pre-training process, we conducted
an ablation to confirm the necessity and effectiveness of the two
pre-training designs, i.e., MLM and NSP, on the final improve-
ment of the model.

In models like BERT and DexBERT, multi-task learning with
MLM and NSP is designed to generate universal features for a
variety of tasks. Removing either task diminishes the model’s
representational power. As demonstrated in Table IX, while
MLM alone can achieve relatively good performance, the com-
bination of both pre-training tasks significantly improves the
model’s performance, reinforcing their mutual importance for
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capturing the Smali bytecode structure and semantics effec-
tively. The results on all three downstream tasks, especially on
defect detection and component type classification demonstrate
the importance of both MLM and NSP pre-training tasks.

C. Comparative Study With Other BERT-Like Baselines

To better understand the necessity and effectiveness of the
pre-training process on Smali code, in this section, we con-
duct a comparative study to assess the performance of ex-
isting BERT-like models that can be directly applied to all
three Android downstream tasks without any technical barriers.
Specifically, the baselines include BERT [1], CodeBERT [15],
and DexBERT without pre-training. With the same reason in
Section V-D, we use the first state vector (size 768) of the
embedding for all comparative experiments.

The outcomes are shown in Table VIII. Interestingly, each
baseline model performed remarkably well for Malicious Code
Localization. This can be attributed to the fact that the dataset
is artificially generated by inserting malicious code into real-
world apps, resulting in a clear separation between positive and
negative samples, making them easy to learn from. However, the
pre-trained DexBERT model outperformed the baselines with
an impressive F1 Score of 0.9999, approaching perfection.

For the other two tasks, Defect Detection and Component
Type Classification, where datasets were collected from real-
world APKs, the pre-trained DexBERT clearly surpassed BERT
and CodeBERT by approximately 20 percentage points on both
tasks. Furthermore, the performance of DexBERT without pre-
training exhibited low performance and instability across the
three tasks, which was somewhat expected as it lacked prior
knowledge before being fine-tuned on downstream tasks. Over-
all, the comparative results shown in Table VIII clearly demon-
strate the necessity and effectiveness of DexBERT pre-training
process on Smali code.

D. Insights

In this work, we find that the popular NLP representation
learning model, BERT can be used for Android bytecode with-
out much modification by regarding disassembled Smali in-
structions as natural language sentences. While it had already
been shown that BERT-like models could be used for source
code, our work shows it can also work directly with raw apps
in the absence of original source code.

Still, there are some gaps between natural language and
Smali code to mitigate. In particular, NLP problems and An-
droid analysis problems have significantly different application
scenarios. NLP problems are usually at the text snippet level,
where the base unit is a (short) paragraph (e.g., sentence trans-
lation or text classification). However, in Software Engineer-
ing and Security for Android applications, there are problems
both at the class-level and the whole app-level, i.e., ranging
from a few instructions to millions of instructions. Therefore,
embedding aggregation is required when applying instruction
embeddings to Android analysis problems.

Besides, while this work is only evaluated on class-level
tasks, it is expected to work at lower or higher levels.

There are no significant technical barriers for lower-level tasks
(i.e., method-level or statement-level) except for the absence
of well-labeled datasets. For higher-level tasks (i.e., app-level),
further embedding aggregation would be required to support
whole-application tasks.

E. Threats to Validity

Our experiments and conclusions may face threats to validity.
First, the MYST dataset used for malicious code localization
is artificially created and, therefore may not be representative
of the real-world landscape of apps. To mitigate this concern,
we expanded our evaluation to include real-world apps from
Difuzer [39]. Moreover, the utility of our malicious code local-
ization model in real-world scenarios could be further assessed
by extending its application to a wider variety of malicious
behaviours beyond logic bombs. This extension could be an av-
enue for future work, as it would necessitate significant manual
analysis efforts.

Second, the dataset for Android app defect detection was
created several years ago. Android applications are constantly
evolving over time. How well DexBERT performs on today’s
apps requires further validation. Therefore, it may be necessary
to create new datasets and conduct more comprehensive eval-
uations on Android app defect detection.

F. Future Work

The proposed DexBERT is validated on three class-level
Android analysis tasks. An important aspect would be to extend
the range of tasks DexBERT is evaluated on. We identified
several tasks (such as malware detection, app clone detection,
repackaging identification, etc.) that are of interest to the re-
search community and that could benefit from our approach.

Besides, we showed that DexBERT representation may not
always need the complete flow of Smali instructions. How-
ever, we investigated only one filtering criterion. Other filtering
approaches could be investigated to refine potential trade-offs
between computational cost and effectiveness.

Finally, the evaluation datasets for tasks such as malicious
code localization and defect detection can be further enhanced
by including more recent applications. Given the substantial
efforts required to process and construct the new datasets, we
plan to undertake this enhancement in a separate study in
the future.

VII. RELATED WORK

This study lies at the intersection of the fields of Represen-
tation Learning and of Android app analysis.

A. Representation Learning

Recent successes in deep learning have attracted increased
interest in applying deep learning techniques to learn repre-
sentations of programming artifacts for a variety of software
engineering tasks [2], [15], [42], [43].
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1) Code Representation: Code representation approaches
aim to represent source code as feature vectors that contain
the semantics and syntactic information of the source code. In
general, code representations can be mainly categorized into
sequence-based, tree-based, and graph-based representations.
The tasks that rely on sequence-based representations consider
source code as plain text and use traditional token-based meth-
ods to capture lexical information, such as clone detection [44],
vulnerability detection [45], and code review [46]. Tree-based
representations capture features of source code by traversing
the AST of the source code. Code2Vec [2] proposes a path-
attention model to aggregate the set of AST paths into a vector.
TBCNN [47] learns code representations that capture structural
information in the AST. Tree-LSTM [48] employs LSTM in
learning the network topology of the input tree structure of
AST. Graph-based representation approaches [49], [50] repre-
sent code as graphs that are associated with programs, such as
control flow graph (CFG), control dependency graph (CDG),
and data dependency graph (DDG).

Inspired by the recent success of transformer-based language
models like BERT [1] and RoBERTa [51] in Natural Language
Processing, Feng et al. [15] proposed CodeBERT, which is pre-
trained both on programming languages and natural languages.
Guo et al. [52] proposed GraphCodeBERT to advance Code-
BERT by additionally considering data flow information in
pre-training.

2) Android App Representation: Android app representa-
tions aim to represent an Android app into feature vectors for
various tasks such as malware detection [27] and clone detec-
tion [53]. Many works [5], [7], [8], [9], [10], [54], [55] relied on
reverse engineering to extract information (features) from APKs
and feed the extracted features into traditional ML-based and
DL-based approaches to obtain Android representations [56].
Static features such as permissions, API calls, and control flow
graphs are widely used in prior works [6], [10], [54], [57], [58],
[59], [60] to generate Android representations. There are several
approaches where representation is based on dynamic features.
For instance, several Android malware detectors [5], [7], [8],
[9], [55] leveraged system calls traces.

The aforementioned features can be represented in different
forms: the vectorized representation and the graph-based repre-
sentation. Features such as permissions or API calls [57], [58],
[59], [60], [61], [62], [63], [64], raw [65], [66] or processed
[67] opcode sequences, and dynamic behaviors [68], [69] are
mainly represented as vectors. Other graph-based features such
as control flow graphs [70], [71] and data flow graphs [72] can
be directly fed to DL models (e.g., Graph Convolutional Net-
work [73], [74]) or embedded into vectors by graph embedding
techniques (e.g., Graph2vec [75]).

B. Android Analysis

Android app analysis tasks can be conducted at different
levels, such as APK-level (e.g., Android Malware Detection
[27], [28], [76], [77], Android Repackaging Identification [78],
[79], [80]), class-level or method-level (e.g., Malicious Code
Localization, Android App Defect Detection).

1) Android Malicious Code Localization: HsoMiner [81]
is an approach to discover HSO (Hidden Sensitive Operation)
activities (e.g., stealing user’s privacy). Li et al. proposed a tool
called HookRanker [82] to automatically localize the malicious
packages from piggybacked Android apps based on how mal-
ware behavior code is triggered. MKLDroid [13], proposed by
Narayanan et al., could be regarded as the first real malicious
code localization approach. They consider multiple views of
Android apps in a unified framework to detect malware. MKL-
Droid assigns m-scores to every class, and the classes with the
highest m-scores are considered malicious. Ma et al. proposed
a deep learning based method called Droidetec [11] for mal-
ware detection and malicious code localization by modeling an
Android app as a natural language sequence. MKLDroid and
Doidetec could achieve a reasonable recall of malicious seg-
ments (classes or methods) by sacrificing precision. Recently,
Wu et al. proposed a Graph Neural Network based approach
[83] for Android malware detection and malicious code lo-
calization. Despite the help of manual checks, the obtained
accuracy is still far from perfect. Among these related works
above, only MKLDroid [13] provides its replication package.

2) Android App Defect Detection: A software defect is an
error or a bug caused by a programmer during the software
design and development process. Early approaches for software
defect detection [84], [85], [86], [87] were not easily adaptable
for Android applications.

Initial attempts at Android defect prediction [88], [89] fo-
cused on extracting code and process metrics from mobile
applications. Similarly, object-oriented metrics [26], [90] were
employed to build defect prediction models. However, the fea-
ture engineering efforts in these approaches limited the veri-
fication of their methods’ effectiveness to a small number of
applications. Additionally, they relied on specific sets of code
and process metrics, which might not be universally applicable
to other APKs. To address this limitation, Dong et al. proposed
smali2vec [14], which automatically extracts features of
Smali instructions and inputs them into a deep learning model
to identify defective classes. They also provided a benchmark
dataset for the community to advance the field of Android
defect detection.

Meanwhile, Just-in-Time (JIT) defect prediction [91], [92],
[93] at the commit level has been developed, offering timely
feedback for developers to detect defects early. However, class-
level prediction methods remain necessary, as they help de-
velopers and testers prioritize their efforts by identifying the
most defect-prone classes. Additionally, class-level prediction
can be useful when a project has a low frequency of commits
or uses a different version control system that makes commit-
level prediction difficult. In this work, we focus on class-level
Android defect detection.

VIII. CONCLUSION

We propose a pre-trained representation learning model
named DexBERT, aiming at solving various fine-grained An-
droid analysis problems. Based on AutoEncoder, we design
an aggregation method to overcome the input length limitation
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problem existing in the original BERT applications. Freezing
parameters of the pre-trained DexBERT model, the learned
representation is able to be directly used on various class-level
downstream tasks. Comprehensive experimental results demon-
strate its effectiveness on malicious code localization, Android
application defect detection and component type classification,
compared to baseline methods.

IX. DATA AVAILABILITY

All artifacts of this study are available at: https://github.com/
Trustworthy-Software/DexBERT
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