
Unveiling Memorization in Code Models
Zhou Yang♦, Zhipeng Zhaor, Chenyu Wang♦, Jieke Shi♦,

Dongsun Kim♠, Donggyun Han♣, and David Lo♦
♦School of Computing and Information Systems, Singapore Management University, Singapore

rDepartment of Computer Science, University of Copenhagen, Copenhagen, Denmark
♠School of Computer Science and Engineering, Kyungpook National University, Daegu, South Korea

♣Department of Computer Science, Royal Holloway, University of London, London, UK
{zyang, chenyuwang, jiekeshi, davidlo}@smu.edu.sg, zpzhao.zzp@gmail.com, darkrsw@knu.ac.kr,

DongGyun.Han@rhul.ac.uk

ABSTRACT
The availability of large-scale datasets, advanced architectures, and
powerful computational resources have led to effective code models
that automate diverse software engineering activities. The datasets
usually consist of billions of lines of code from both open-source
and private repositories. A code model memorizes and produces
source code verbatim, which potentially contains vulnerabilities,
sensitive information, or code with strict licenses, leading to poten-
tial security and privacy issues.

This paper investigates an important problem: to what extent do
code models memorize their training data? We conduct an empirical
study to explore memorization in large pre-trained code models.
Our study highlights that simply extracting 20,000 outputs (each
having 512 tokens) from a code model can produce over 40,125 code
snippets that are memorized from the training data. To provide a
better understanding, we build a taxonomy of memorized contents
with 3 categories and 14 subcategories. The results show that the
prompts sent to the code models affect the distribution of mem-
orized contents. We identify several key factors of memorization.
Specifically, given the same architecture, larger models suffer more
from memorization problem. A code model produces more memo-
rization when it is allowed to generate longer outputs. We also find
a strong positive correlation between the number of an output’s
occurrences in the training data and that in the generated outputs,
which indicates that a potential way to reduce memorization is
to remove duplicates in the training data. We then identify effec-
tive metrics that infer whether an output contains memorization
accurately. We also make suggestions to deal with memorization.

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques; •Computingmethodologies→Artificial intelligence;
• Security and privacy;

KEYWORDS
Open-Source Software, Memorization, Code Generation

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639074

ACM Reference Format:
Zhou Yang♦, Zhipeng Zhaor , Chenyu Wang♦, Jieke Shi♦,, Dongsun Kim♠,
Donggyun Han♣, and David Lo♦. 2024. Unveiling Memorization in Code
Models. In 2024 IEEE/ACM 46th International Conference on Software Engi-
neering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3597503.3639074

1 INTRODUCTION
As more large open-source datasets become publicly available [30,
38], code models [10, 21, 29, 50, 66], trained on billion lines of code,
are now an important part of software engineering. The models
automate a series of critical tasks such as defect prediction [60], code
review [42], code generation [7] and software questions analysis [33,
34, 68]. These models have gone beyond academic exploration
and have been widely deployed and used by a large number of
users. For example, GitHub CoPilot [2], powered by the OpenAI
Codex model [21], obtains over 400,000 subscribers in the first
month of its release [63] and has already been used by over 1.2
million developers. In addition, the recently released models [3, 29,
41] demonstrate outstanding performance in software engineering
tasks [58, 67] and has powered many tools, e.g., IDE plugins.

The impressive performance of these models can be attributed to
the combination of advanced model architectures (e.g., state-of-the-
art Transformer models with Despite the remarkable advancements,
they are confronted with a set of privacy and legal challenges. For
example, CoPilot was found to produce real people’s names and
physical addresses in its outputs [25]. It is also reported that Sam-
sung employees accidentally leaked company secrets via Chat-
GPT [6], which raises concerns as ChatGPT retains records of
these conversations and could potentially use this data for training
its system [5].

The above concerns emphasize the importance of exploring the
capacity of large code models to memorize their training data. A code
model memorizes a string from its training data if there exists a
prompt to make the model generate this string. This exploration
is critical, especially given the fact that the training data for these
models may come from a variety of sources. For example, large
public datasets, such as the repositories hosted on GitHub, are
made publicly available for training code models. These datasets
may contain licensed code. If code models memorize and generate
licensed code, and model users are not aware of this and utilize the
code, it potentially results in a breach of the license agreements.

The training data includes ‘software secrets’ [13] such as pass-
words and API keys, which can be outputted to users and leveraged
by attackers directly. For instance, as shown in our evaluation, a

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639074&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun Han, David Lo

code model can memorize the username and password to access a
database in a public IP address. Furthermore, the training datasets
may contain vulnerable or even malicious code. Such code could
potentially be memorized and displayed to users, causing a serious
risk to the security and integrity of software systems that adopt
outputs of the code models. Therefore, it is crucial to understand
the memorization in code models.

To investigate the memorization of code models, we first explore
two open-source models: CodeParrot and CodeParrot-small [1].
CodeParrot is a GPT-2 model with 1.5 billion parameters trained to
generate Python code. CodeParrot-small is a lightweight version
of CodeParrot with 110 million parameters. We choose to analyze
the two models because (1) their training data is available and is of a
size feasible to conduct memorization analysis; (2) the models share
the same architecture and dataset but come in two sizes, allowing
us to investigate the impact of model size on memorization;

Our investigation begins by extracting a large number of outputs
using different methods. We extract 20,000 outputs by feeding a
special token called the ‘start token’ as a prompt into CodeParrot;
this method provides no information to guide the generation. Af-
ter identifying over 40,125 unique memorized code snippets using
clone detection, we conduct an open card sorting study on a statisti-
cally representative number (381) of memorized contents to build a
taxonomy with 3 categories and 14 subcategories. We find that 277
out of 381 memorized code snippets contain documentation (e.g.,
license information and docstring), and 239 out of 381 memorized
code snippets contain code logic.

Additionally, we investigate factors that affect the memorization.
The results show that CodeParrot memorizes more contents than
CodeParrot-small, indicating that larger models have stronger
memorization ability. Allowing a model to generate longer outputs
can reveal morememorization.When themaximal length of outputs
increases, the number of memorized contents increases as well.
We also find a strong positive correlation between the number
of a memorized content’s occurrences in the training data and
that in the outputs, which indicates that a potential way to reduce
memorization is to remove duplicates in the training data.

Inspired by a study on memorization in language models [19],
we investigate four metrics to infer whether an output contains
memorization: (1) perplexity [22], (2) ratio of perplexity of two mod-
els, (3) ratio of perplexity to zlib [4], and (4) average perplexity of
sliding windows. We compute these metrics to rank the outputs and
analyze the top-100 ranking outputs. We find that the first 3 metrics
are very effective in identifying memorized contents: over 97% of
the top-100 outputs contain memorization. However, metrics (1)
and (3) tend to rank outputs with license information higher, while
metric (2) tends to rank outputs with code logic higher. Additionally,
to demonstrate that memorization also exists in other code models,
we analyze outputs from two popular code models that have already
been deployed in practice: Incoder [29] and StarCoder [41]. We
manually analyze the top 100 outputs from the two models ranked
using metric (2). We search code snippets in the top 100 outputs
on GitHub to see whether GitHub repositories contain the same
code. If yes, it is an evidence that the model potentially memorize
the code from its training data collected from GitHub. We find that
81% and 75% of the top-100 outputs from Incoder and StarCoder
contains code snippets that can be found on GitHub, respectively.

Besides, 90.12% and 65.33% of memorization are related to code
logic.

To summarize, this paper makes the following contributions:
• We systematically investigate the phenomena of memoriza-
tion in large code models, highlighting the potential risks of
memorization in code models.
• We empirically show the feasibility to extract a large number of
memorized contents from a code model using simple methods.
We categorize the memorized contents into 14 categories and
analyze their distribution.
• We analyze the factors affecting memorization in code models.
Also, we evaluate metrics to infer memorization.
• We show that deployed code models memorize training data
as well. We also provide some suggestions on how to deal with
potential risks brought by such memorization.

Paper structure. Section 2 provides the background and moti-
vation. In Section 3, we detail our methodology for extracting,
identifying and inferring memorization. Section 4 describes the
experiment settings. We analyze the memorization by answering
three research questions in Section 5. In Section 6, we provide some
suggestions and discussion Next, Section 7 highlights relevant stud-
ies. We conclude our paper and present future work in Section 8.

2 BACKGROUND AND MOTIVATION
This section describes the code generation process and some moti-
vating examples to study such memorization.

2.1 Code Generation Process
Modern code models typically utilize the Transformer architec-
ture [64]. Many well-known models (such as InCoder [29] and
codeparrot [1]) are built on the GPT-2 model [54], which is referred
to as the generative pre-trained transformer model. The primary ob-
jective of such models is to generate code based on a given context
(i.e., the prompt sent into the model’s input layer). This is accom-
plished by training the model on a large corpus of datasets and
letting the model learn a probability distribution that predicts the
likelihood of the next token, given the context.

Let us assume that the context consists of a sequence of tokens,
denoted by 𝑝 = ⟨𝑥1, 𝑥2, · · · , 𝑥𝑛⟩. The model applies a softmax layer
to compute the probability distribution of the next token, denoted
by 𝑃 (𝑥𝑛+1 |𝑝). Formally, this distribution is defined:

𝑃 (𝑥𝑛+1 |𝑝) =
𝑒𝑧𝑛+1∑𝑘
𝑖=1 𝑒

𝑧𝑖
(1)

In the equation, 𝑧𝑖 is the logit of the 𝑖-th token computed by the
model. Then, the model uses a decoding strategy to decide the next
token. A commonly adopted strategy is the top-𝑘 sampling [15].
The model selects the 𝑘 most probable tokens from the probability
distribution, and then chooses the next token from this new set of
tokens. The parameter 𝑘 plays an important role in balancing the
trade-off between diversity and coherence in the generated output.
Intuitively, a small 𝑘 encourages the model to generate more fixed
and coherent outputs, while a large 𝑘 introduces randomness and
diversity. This paper assumes users can control the code generation
by modifying the 𝑘 parameter, which is feasible even with only
access to the API (e.g., OpenAI API allows 𝑘 to be changed).

Unveiling Memorization in Code Models ICSE ’24, April 14–20, 2024, Lisbon, Portugal

2.2 Memorization Definition
Memorization in the context of generation tasks refers to a model’s
ability to store and recall specific information or patterns it has
encountered during its training. We define a string 𝑠 as a piece of
memorization as follows. Let 𝑓 : 𝑃 → 𝑆 be a code model, where 𝑃
is the space of prompts and 𝑆 is the space of strings. Let 𝐷 ⊆ 𝑆 be
the training dataset. A string 𝑠 ∈ 𝑆 is considered memorized if:

∃𝑝 ∈ 𝑃 ; 𝑠 ∈ 𝑓 (𝑝) ∧ 𝑠 ∈ 𝐷 (2)

In other word, a string 𝑠 is memorized if there exists a prompt 𝑝 such
that the model generates 𝑓 (𝑝) when given 𝑝 as input, and 𝑠 appears
both in the training dataset 𝐷 and the generated output 𝑓 (𝑝). In
practice, the length of 𝑠 should be substantially long. Otherwise,
there might be many less useful memorized code such as variable
names or boilerplate statements. We explain the threshold to decide
memorization from code models in Section 3.2.

2.3 Memorization in Code Models
The issue of memorization is especially concerning and should
warrant careful attention from the research community. We explain
three scenarios where memorization may negatively impact the
codemodels. Each scenario comeswith an example of memorization
we encountered during our experiments.We obfuscate the examples
due to ethical considerations (e.g., protecting sensitive information
and the identity of contributors of vulnerable code).

Scenario 1: Intellectual property issues. Some code models are
trained on public repositories on GitHub, without paying much
attention to the licensing terms of the code. Consequently, mem-
orization in code models may cause intellectual property issues,
such as violation of open-source licenses. When the model learns
to reproduce specific code snippets from the training data instead
of generalizing the underlying concepts, this leads to the genera-
tion of code that closely resembles copyrighted or licensed code,
potentially infringing on the intellectual property rights of the orig-
inal authors. Listing 1 shows an output from CodeParrot, which
memorizes the original read function verbatim from a public repos-
itory that is licensed under Apache License 2.0. If a developer uses
the generated code without proper compliance with the Apache
License 2.0 terms, it may violate open-source licenses.

1 def read(self , iprot):
2 iprot.readStructBegin ()
3 while True:
4 (fname , ftype , fid) = iprot.readFieldBegin ()
5 if ftype == TType.STOP:
6 break
7 if fid == 1:
8 if ftype == TType.STRING:
9

Listing 1. An example of code snippets generated by
CodeParrot, which is protected by an Apache license.1

Scenario 2: Security vulnerabilities. The training data may con-
tain vulnerable and evenmalicious code. After being trained on such
data, code models might generate malicious code and exploitable
bugs, or adopt poor security practices. If a model memorizes and
outputs insecure code to users, it puts users and systems at risk
1https://github.com/Workiva/frugal

by opening them up to security threats. Listing 2 demonstrates
potential security risks related to code model memorization. The
memorized code is susceptible to SQL injection attacks because it di-
rectly uses the ‘user_id’ input in the SQL query without sanitizing
or parameterizing it. An attacker could potentially manipulate the
‘user_id’ input to execute malicious SQL queries if this generated
code is adopted by users.

1 def fetch_user_data(user_id):
2 connection = sqlite3.connect(<masked value >)
3 cursor = connection.cursor ()
4 query = f'SELECT * FROM users WHERE id = {user_id}'
5 + <masked value >
6 cursor.execute(query)

Listing 2. An example of insecure code generated by
CodeParrot. The identifiers are substituted and strings are
masked due to ethical consideration.

Scenario 3: Leakage of sensitive information. Recent studies
show that there exist a vast amount of software secrets in public
repositories [13, 27], including API keys, passwords, etc. A code
model that tends tomemorize data can cause the leakage of sensitive
information if it has been exposed to such information during
training. Listing 3 provides an example that a codemodelmemorizes
a hardcoded public IP address, username, and password from its
training data. On the one side, the code model exposes sensitive
information, leading to potential security breaches and privacy
violations. On the other side, even the end users do not use the
generated information, users may use the program sketch and
replace the password with their own, which is still an insecure
development practice.

1 netowrk_config = {
2 'device_type ': <masked value >,
3 'ip': <masked value >,
4 'username ': <masked value >,
5 'password ': <masked value >
6 }
7 network_con = ConnectHandler (** netowrk_config)
8 print network_con.find_prompt ()

Listing 3. An example of source code with sensitive infor-
mation generated by CodeParrot, including sensitive infor-
mation like public IP address, username, etc. Identifiers are
substituted and strings are masked for ethical consideration.

2.4 Ethical Consideration
We emphasize our ethical responsibility by explicitly stating that
our goal is to comprehend the memorization phenomenon rather
than actively exploiting sensitive information within memorized
contents. Consequently, we avoid utilizing ‘targeted attacks’ [9] (i.e.,
aiming to extract specific types of memorization from the training
data) to identify or extract sensitive information deliberately. To
further minimize the ethical concerns, we choose two open-source
code models that are trained on publicly available datasets rather
than models that are commercial. Throughout the research process,
we ensure that we handle data and results in an ethical manner.
For example, in Listing 2 and 3, we obfuscate identifiers and mask
the sensitive information so that the contributors of the vulnerable
code cannot be disclosed.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun Han, David Lo

3 METHODOLOGY
This section explains the methodology of our study, including how
to sample outputs from code models and how to detect memoriza-
tion in code models.

3.1 Generating Outputs from Code Models
We consider four different strategies to generate outputs from code
models: non-prompt generation, temperature-decaying generation,
prompt-conditional generation, and two-step generation.

Non-Prompt Generation (NPG). We leverage the autoregressive
nature of language models to generate outputs without an initial
prompt. The generation process is described as:
(1) Language models usually have a special token to represent the

beginning of a sentence (e.g., <s> in GPT-2). We initialize a
token sequence with only this start-of-sentence token, denoted
by 𝑝 = ⟨𝑥1⟩, where 𝑥1 = <s>.

(2) For each step 𝑡 = 2, 3, · · · , we compute the probability distri-
bution of the next token given the current token sequence as
input, 𝑃 (𝑥𝑡 |𝑝) and decide the next token 𝑥𝑡 . We then append
the new token to the token sequence, updating the context for
the next iteration: 𝑝 ← ⟨𝑝, 𝑥𝑡 ⟩.

(3) The above process repeats until a termination criterion is met.
In this paper, the termination criterion is specified by the maxi-
mal length of output a model generates. Once the termination
criterion is met, the generated token sequence is then decoded
into human-readable code.

Temperature-Decaying Generation (TDG). The outputs gen-
erated by NPG can often be repetitive and lack of diversity. To
increase the diversity, we can use a larger value for the temper-
ature 𝜏 . The temperature value controls the level of diversity in
outputs. Recalling the Equation 1, the temperature 𝜏 is used to scale
the logits before applying the softmax function. Specially, the new
distribution is computed as follows:

𝑃 (𝑥𝑛+1 |𝑝) =
𝑒
𝑧𝑛+1
𝜏∑𝑘

𝑖=1 𝑒
𝑧𝑖
𝜏

(3)

When 𝜏 is small, the probability distribution is compressed, which
means that the model will be more likely to select the originally
most probable tokens. Otherwise, the model will give less prefer-
ence to the originally most probable tokens, producing more diverse
outputs. However, maintaining a high temperature increases the
probability of generating incoherent code and, as a result, produces
less memorization. Carlini et al. [19] use the temperature-decaying
strategy. Specifically, during the generation process, the temper-
ature gradually decreases from a high value to a low value. It en-
courages the model to generate diverse outputs for the first several
tokens and then gradually focus on generating coherent outputs.

Prompt-Conditioned Generation (PCG). This strategy requires
designing a prompt for the code model. Generation from the start
token tends to produce many contents that usually appear at the
beginning of code files, e.g., license information. Besides, the users
usually send prompts to the code model for completion rather
than generating code from the start token. Therefore, we randomly
choose a list of files from unseen testing data and parse the files

to extract the function definition statements. We feed the func-
tion definition statements as the prompt to the code model for
completion.

Two-Step Generation (TSG). In NPG, a code model generates
outputs from the start token, which produces a large number of
license information and less amount of outputs relevant to the
prompt. Thus, after we identify memorization using NPG, we send
the most frequently appearing memorization as the prompt to the
code model for completion to explore whether this can drive the
model to generate more memorization.

3.2 Memorization Detection
After generating outputs from the code models, we detect whether
the outputs contain memorization. Recalling the definition of mem-
orization in Section 2.2, a string frommodel outputs is memorized if
this string is also in the training data. In a previous study analyzing
memorization in natural language models [19], the memorization
is detected by performing fuzzy match (e.g., 3-gram fuzzy match)
between the generated text and the training data. However, this
strategy is not suitable to code models for the following reasons.
Unlike natural language, source code has a more structured syntax
with specific rules and conventions, which usually have unique con-
structs, keywords, and idioms that often occur together in specific
sequences. A fuzzy match approach might flag these commonly
occurring sequences as memorization despite the fact that they are
simply inherent to the language.

We use the concept of code clone to determine whether an output
containsmemorization. A Type-1 clone, also known as an exact clone
or an identical clone, refers to a specific type of code duplication in
which two or more code fragments are exactly the same [56]. This
means that the code fragments have the same sequence of tokens,
including comments, whitespace, and formatting. Comparing to
other types of clone (e.g., Type-2 clone), Type-1 clone means that a
model produces output verbatim from the training data, which is
a stronger evidence of memorization. However, very short Type-
1 clones may not be considered memorization and they may not
reveal useful information about the model. For example, the code
snippet ‘a = 1’ may appear in many places in the training data.
As a result, we only consider Type-1 clones that are longer than a
threshold number of lines 𝐿.

Following a study [23] on analyzing the clones of code generated
by deep learning-based code recommenders, we employ Simian [32]
for identifying Type-1 clones between the generated code and the
training data. Although there are other clone detection tools, some
of these tools are not publicly accessible, and others are unable to
process incomplete code snippets, which are often produced by
language models. By default, Simian identifies clones that span at
least six lines, which is chosen as the threshold 𝐿 in our study.

3.3 Memorization Prediction
Whilememorization detection directly compares the output of a code
model with source code in the training data,memorization prediction
infers whether an output contains memorized content without
accessing the training data. This task assumes that the training
data is not accessible; this may simulate adversarial settings. For
example, a malicious user may generate a large amount of outputs

Unveiling Memorization in Code Models ICSE ’24, April 14–20, 2024, Lisbon, Portugal

and then infer which parts are more likely to be memorization. If
such a malicious user can infer memorization correctly, information
regarding the training data (e.g., private code or software secrets)
can be leaked, putting a potential security risk. According to the
study on analyzing memorization in natural language models [19],
this paper adopts the following metrics to infer memorization.

Perplexity. Perplexity [22] measures how well a language model
predicts a sample. A lower perplexity value indicates that the model
is more confident in its predictions. Intuitively, a model is more
confident on the example that it has seen during training. There-
fore, a lower perplexity value may indicate that a model retrieves
memorization.

PPL-PPL ratio. Language models tend to have low perplexity trivial
memorization, e.g., repeated contents such as license information.
From the perspective of risk assessment, exposing code logic leads
to higher risks than exposing trivial memorization. Imagining that
there are two code models: a small model and a large model, both
trained on the same dataset. As shown in Section 5.2, a large model
better memorizes more non-trivial contents than the small model.
It means that on trivial memorization, both two models have small
perplexity, but on non-trivial memorization, the large model has
smaller perplexity than the small model. Therefore, we use the
ratio of perplexity between the large model and the small model
to infer memorization. We name this metric as PPL-PPL ratio (PPL
for perplexity). The metric is computed as 𝑙𝑜𝑔 (𝑃𝑙)

𝑙𝑜𝑔 (𝑃𝑠) , where 𝑃𝑠 is the
perplexity computed using the small model and 𝑃𝑙 is the perplexity
of the large model. A small ratio indicates that an output is more
likely to contain non-trivial memorization.

PPL-zlib ratio. zlib [4] is a data compression library. The zlib
entropy of a text is computed as the number of bits when the text is
compressed with zlib library. A repetitive input has a small zlib
entropy. We compute the PPL-zlib ratio: 𝑙𝑜𝑔 (𝑃𝑣)

𝑧𝑙𝑖𝑏
(the ratio of the

model perplexity and the zlib entropy). A small ratio indicates
that the output content is more likely to be memorized but less
likely to be repetitive [19].

Average PPL. Memorized contents may be surrounded by non-
memorized outputs. Computing the perplexity of an output mixed
of memorized and non-memorized content may not reflect the
model’s confidence. As stated in Section 3.2, clones spanning over
6 lines are considered as memorization in this paper. So we apply
a sliding window of 6 lines to each output (moving by one line
each time). We compute the perplexity of each window and then
compute the Average PPL of all windows. We rank model outputs
by the Average PPL in ascending order.

4 EXPERIMENT SETUP
4.1 Subject Code Models and Dataset
4.1.1 Models for Memorization Analysis. This paper first analyzes
the contents that are exactly memorized from the training data
(i.e., Type-1 clones) and the factors that affect such memoriza-
tion. To achieve this goal, we investigate two models: CodeParrot
and CodeParrot-small. The former is based on the GPT-2 model
with 1.5 billion parameters, and the latter is a smaller version

Table 1. Model performance on the OpenAI’s HumanEval
benchmark [21]. Pass@n means the chance that a model
provides a correct answer within 𝑛 attempts.

Model Size Pass@n

n=1 n=10 n=100

CodeParrot 1.5B 3.80% 6.57% 12.78%
CodeParrot-small 110M 3.58% 8.03% 14.96%
PolyCoder 160M 2.13% 3.35% 4.88%
PolyCoder 400M 2.96% 5.29% 4.88%
GPT-Neo 125M 0.75% 1.88% 2.97%
GPT-Neo 1.3B 4.79% 7.47% 16.30%

of CodeParrot, which also uses the GPT-2 architecture but has
fewer (110 million) parameters. Both models are trained on a col-
lection of Python files from scratch. The two models are available
on the HuggingFace model hub. Table 1 shows the performances
of two investigated models and other code models of similar sizes
on the OpenAI’s HumanEval benchmark [21]. Although there are
other available code models, this study selects CodeParrot and
CodeParrot-small as the main research subjects for the following
reasons.

First, the training data of some models can be either inaccessible
or lack sufficient details, preventing a thorough analysis of their
memorization capabilities. For example, InCoder [29] states the
source of its training data but does not provide the exact dataset
used for training. Second, while some models have available data,
its extensive dataset, which includes multiple programming lan-
guages, complicates clone detection-based memorization analysis.
For example, SantaCoder [10] uses a training set of 3TB and GPT-
Neo [16] is trained on a diverse text dataset of 800GB. Additionally,
SantaCoder only comes in one size, making it unsuitable for an-
alyzing the impact of model size. Third, commercial models like
ChatGPT exhibit superior results but cannot be analyzed due to the
unavailability of their training data. Attempting to extract training
data from these models can be potentially considered violating their
terms of use as well. Lastly, CodeParrot is a popular model. Query-
ing “CodeParrot” as the keyword on HuggingFace returns 419
models. In contrast, searching HuggingFace using “codebert” and
“codet5”, which are both widely evaluated models in the literature,
returns only 126 and 124 models, respectively.2

The selected models are trained on the CodeParrot dataset,
which was created with the GitHub dataset available via Google’s
BigQuery. This dataset contains approximately 22 million Python
files and is 180 GB in size. Some preprocessing steps are conducted
to clean the dataset. After removing whitespace in each file, the
developers of CodeParrot find and remove exact duplicates by
computing the hash of each file. The files whose first 5 lines contain
the word ‘auto-generated’ are removed to remove the potentially
generated files. Then, we follow the preprocessing tasks detailed in
the original dataset repository. After data cleaning, the processed
dataset is split into the training set and the validation set, which
contain approximately 5 million files that are 50GB.

2The result is obtained on 25 July 2023.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun Han, David Lo

4.1.2 Analyzing Memorization in Deployed Models. We also con-
duct a case study on more code models to analyze whether they
can potentially memorize their training data as well. We select two
additional models: Incoder [29] and StarCoder [41]. We consider
these models for the following reasons. (1) The two models are
of larger sizes (6B and 15.5B, respectively), popular, and demon-
strate strong performance [29, 41]; and (2) These models have been
deployed for practical usage. StarCoder has been deployed as an
extension that can be used in IDEs like IntelliJ IDE3. Incoder is
deployed and used within Meta [47]. Evaluating these models can
help us understand the risks of using code models in practice.

4.2 Research Questions
In this study, we answer three research questions to investigate the
risk of code models memorizing training data:
• RQ1. What do code models memorize?
• RQ2. What factors affect memorization in code models?
• RQ3. How to infer whether an output contains memorized infor-
mation?

The first question aims to understand the extent and nature of in-
formation that code models tend to memorize, trying to categorize
the memorized contents into different types. The second question
analyze the factors that influence the memorization, which helps
us understand the risks associated with code models leaking their
training data. The third question focuses on infering whether an
output contains memorized information from its training data. By
addressing these research questions, we seek to get a deeper un-
derstanding of the risks associated with code models leaking their
training data, along with practical techniques to identify and miti-
gate such risks. The following paragraphs describe the experiment
design for each research question.

4.2.1 RQ1. What do code models memorize?
Motivation. Code models are trained on a large amount of data
collected from various sources, including both public open-source
repositories and private code bases; both of which are prone to
contain sensitive information. Understanding what code models
memorize helps avoid the risks associated with code models leaking
their training data. For example, if code models can memorize
and output information such as function implementation and even
private data, then the risk of code models leaking their training
data is high.

Experiment Design. We make a code model generate a large
amount of source code according to different generation strate-
gies described in Section 3.1. For this experiment, we choose the
CodeParrotmodel as the experiment subject. For each strategy, we
generate 20,000 outputs; each output has a maximal length of 512
tokens. Then we analyze the Type-1 clones spanning more than
6 lines that appear in both the training data and the outputs, i.e.,
memorized contents.

In order to gain a deeper understanding of the memorization,
we design an annotation study to classify the memorization into
different categories. We identify 40,125 unique clones (ranging
from 6 to 53 lines) from 20,000 outputs produced by Non-Prompt

3https://plugins.jetbrains.com/plugin/22090-starcoder

Generation (NPG). We use a widely adopted sample size calculator4
with a confidence level of 95% and a confidence interval of 5 to
obtain a statistically representative sample size of 381. We conduct
an open-card sorting study [14], a well-established technique for
generating meaningful groupings of data. Two authors of this paper
discuss with each other to categorize the cards and a senior author
resolves the disagreement and merge low-granularity categories
into higher-level ones. We then classify the memorized contents
into three main categories: Documentation, Code Logic, and Others,
each having 2 to 8 sub-categories. Each memorized content can
contain multiple categories.

4.2.2 RQ2. What factors affect memorization in code models? Mo-
tivation. RQ1 shows that code models memorize different types
of contents and that the content of the prompts affects the model
outputs, motivating us to further investigate the other factors that
impact the memorization of code models. Knowing the relevant fac-
tors helps us better understand code models and highlight potential
directions to mitigate memorization.

Experiment Design. We consider the following factors that may
affect the memorization of code models.
• Model size: Previous research [50] shows that if two models
share the same architecture and the same dataset, the larger
model has stronger capacity. In this experiment, we compare
the memorization power of CodeParrot and its smaller version
CodeParrot-small.
• Top 𝑘 sampling: Code models generate the next token by choos-
ing from the top-𝑘 most likely tokens. A small (large) 𝑘 value
can generate more fixed (diverse) outputs. We try 4 settings: 5,
10, 20, and 40 to investigate the effect of 𝑘 .
• Output length: The length of model outputs (i.e., number of
tokens generated) may also impact the memorization of code
models. We try 4 settings: 256, 512, 768, and 1024.
• Number of generated outputs: If we can query the model for
many times and obtain many outputs, the model may expose
more memorized information.
• Occurrences in the training data: The number of occurrences
of a code snippet in the training data can affect the memorization.
Intuitively, if the model sees a training example frequently, it
may overfit this example and produce the frequently occurring
patterns at higher probability.

4.2.3 RQ3. How to infer whether an output contains memorized
information?
Motivation: For the aforementioned research questions, we assume
to have complete access to the training data in order to analyze
memorization. This assumption is practical when conducting analy-
sis as model developers. However, in certain adversarial situations,
such as when malicious users aim to extract training data from
code models, the attacker typically does not have knowledge of the
training data. Therefore, we investigate how to infer whether an
output from code models contains memorization without querying
the training data.
Experiment Design: We use the methods described in Section 3.3
to rank the outputs from codemodels by using four differentmetrics.

4https://www.surveysystem.com/sscalc.htm

Unveiling Memorization in Code Models ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Following the setting in the paper that propose these metrics [19],
we look into the 100 top-ranking outputs from the ranked lists and
compute the ratio of the outputs containing memorized contents.

4.3 Implementation Details
We fetch the CodeParrot and CodeParrot-small models from
the HuggingFace model hub and run them an NVIDIA GeForce
A5000 GPU with 24 GB of memory. To implement the temperature-
decaying generation, we use an initial high temperature of 20.0.
Each time themodel generates a new token, we decrease the temper-
ature by 1.0 until it reaches 1.0 (i.e., 20 tokens are generated), after
which we keep the temperature at 1.0. We download the datasets
of the two models released by the authors of CodeParrot.5 As the
clone detection tool we use consumes a large amount of time when
analyzing many files, we merge all the files in the training data and
split the merged file into 53 chunks and run clone detection in par-
allel. On a machine having AMD EPYC 7643 CPU with 48 cores and
512GB memory, analyzing memorization for each 20,000 examples
in parallel takes one hour. We encourage researchers with more
computational resources to replicate our study at a larger scale.

5 EXPERIMENT RESULTS
5.1 RQ1. What do code models memorize?
Memorization Detection and Categorization.Model outputs
by different generation strategies include a significant number
of code fragments memorized from the training data. Note that,
on average, approximately 43% and 57% of 20,000 outputs from
CodeParrot-small and CodeParrot contain memorized informa-
tion, respectively. Following the procedure described in Section 4.2.1,
we randomly sample 381 memorized outputs for each generation
strategy and categorize them. Table 2 shows the total number of
occurrences of each category obtained using different generation
strategies. We observe that the license and copyright, as well as the
import statements, are the most frequent categories. More specifi-
cally, the license and copyright category appears 216, 150, 288, and
222 times in the outputs generated by NPG, TSG, TDG, and PCG,
respectively. The import statements sub-category appears 129, 211,
80, and 112 times, respectively. The reasons for their higher fre-
quency than other categories are two-fold. On the one side, such
information usually appears at the beginning of a file, which is easy
to been seen and memorized. On the other side, there exist many
duplicates of such information (e.g., developers declare the same
license in many files).

Each generation strategy shows different distributions of outputs.
For example, we find that TSG tends to generate less license and
copyright information (decrease from 216 to 150) and more code
logic (increase 239 from 330) than NPG. The reason is that TSG
selects the most frequent memorization found by NPG (which is the
license information) as the prompt into code models. The model will
complete the content after the prompt and thus skips the license
information to generate more code logic related contents, such as
import statements and method definitions.

5https://huggingface.co/datasets/codeparrot/codeparrot-clean

Table 2. Occurrences of memorization extracted with Non-
Prompt Generation (NPG), Temperature Decaying Genera-
tion (TDG), Prompt-Condition Generation (PCG), and Two-
Step Generation (TSG). The number of annotated outputs for
each sampling method is 381. Note that one output may map
to multiple categories of memorization.

Category NPS TSS TDS PCS

Documentation 277 247 333 315
License and Copyright 216 150 288 222
Docstring 30 55 10 50
Usage Intruction 31 42 35 43

Code Logic 239 330 100 304
Import Statements 129 211 80 112
Method Definition 39 41 2 41
Method Calls 25 30 4 60
Class Definition 17 19 4 18
Conditional Statements 14 10 4 33
Exception Handling 9 11 4 32
Testing 4 7 2 5
Print Statement and Log 2 1 0 3

Others 60 36 45 57
Configuration 38 23 25 52
Unable to Classify 22 13 20 5

Temperature has an impact on the diversity of sampled out-
puts. For example, TDG drives the models to produce higher por-
tion of license information. The potential reason is that using a
higher temperature diversifies model outputs. For those contents
that are harder to memorize (e.g., code logic), adding more diver-
sity makes the model fail to generate them. Consequently, most
of the outputs generated by TDG are license information while
it generates the least code logic among all generation strategies.
Although the prompts used in PCG already include the license and
import statements, PCG produces a similar number of license and
import statements as NPG. This is because PCG generates code
logic to complete the function first, after which the model generates
license and import statements. This observation contrasts with the
conclusion drawn in NLP models that higher temperature values
helps the model produce more non-trivial information [19], which
is the code logic in our case.

Interestingly, we find that PCG produces more memorization
related to code logic than other generation strategies. For example,
the occurrences of exception handling increase from 9 in NPG to
32 in PCG, and that of method calls increase from 25 to 60. PCG to
some extent simulates the behavior of users when interacting with
code models: writing some code like function definition and letting
the model complete. Our results suggest that code models may
produce much memorization when interacting with users, posing
data leakage risk.
Sensitive Information Detection. Our experiment also reveals
sensitive information memorized by the code models. One of the
examples is shown in Listing 4 in which we can identify a private
key that might expose financial accounts. As discussed in Section 2,
there might be other types of sensitive information, but we focus
on counting IP addresses, email addresses, and hash keys as they

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun Han, David Lo

1 class SignMessagesTest(BitcoinTestFramework):
2 def set_test_params(self):
3 self.setup_clean_chain = True
4 self.num_nodes = 1
5 def run_test(self):
6 message = <masked value >
7 self.log.info(<masked value >)
8 priv_key = <masked value >

Listing 4. An example of source code with private keys. The
identifiers are substituted and strings are masked because of
ethical consideration.

are explicitly identifiable compared with other types of information
such as licensed code or vulnerabilities. We use detect-secrets,6
a popular open-source tool to scan three types of sensitive infor-
mation in the 20,000 outputs generated by NPG. After removing
local IPs and emails containing “example,” we find 25 IP addresses,
914 emails, and 25 keys that are exactly same with the information
from the training data as well (i.e., they are memorized).7 Our find-
ings warn that such sensitive information requires to be properly
handled (e.g., removed) before training code models.

Answers to RQ1: Code models successfully memorize different
types of content, including both documentation and code logic.
The license and copyright, as well as import statements, are the
most frequently appearing memorization. With proper strategies,
one can drive the model to produce more code logic-related mem-
orization. Code models memorize sensitive information such as
private keys and emails.

5.2 RQ2. What factors affect memorization in
code models?

Model size and top 𝑘 sampling. The model size has a substantial
impact on the frequency of memorized outputs and 𝑘 parameters af-
fect the results of memorization as well. Following the procedure de-
scribed in Section 5.2, we use the Non-Prompt Generation (NPG) to
generate 20,000 outputs from CodeParrot and CodeParrot-small,
respectively. Figure 1a illustrates the numbers of unique memo-
rization in the outputs of the two models with different 𝑘 values.
The orange and blue curves represent the results of CodeParrot
and CodeParrot-small, respectively. We observe that curve of the
larger model CodeParrot is consistently above the other curve,
suggesting that it memorizes more contents. Besides, the larger
CodeParrot also memorizes longer contents. Given the same set-
ting (k=20, output length is 512), CodeParrot produces memoriza-
tion with a maximal of 60 lines, while CodeParrot-small only
produces memorization with a maximal of 45 lines.

We analyze how the 𝑘 value affects the memorization of code
models. We try 4 settings of 𝑘 values: 5, 10, 20, and 40. The length
of each output is set as 256 tokens. As shown in Figure 1a, when 𝑘
is low (e.g., 5), both models produce less memorization. As a small
𝑘 means that a model chooses from a small and relatively fixed
set of tokens, which may lead to the generation of memorization
with more duplicates (i.e., the number of unique memorization
is smaller). When 𝑘 increases from 5 to 10, the outputs become

6https://github.com/Yelp/detect-secrets
7The detection results of other generation strategies are included in ‘./PPI’ folder in
the replication package.

Table 3. Number of unique memorized-code for a given set of
parameters: (1) number of tokens and (2) number of outputs.

Model # outputs 256 512 768 1024

CodeParrot-
small

5,000 6,666 9,080 11,041 14,031
10,000 10,627 14,655 17,664 22,243
15,000 14,015 19,444 23,863 29,133
20,000 16,966 23,574 29,204 35,363

CodeParrot

5,000 9,785 14,645 18,325 22,570
10,000 16,062 24,345 32,519 37,448
15,000 21,560 32,666 42,853 50,127
20,000 26,420 40,125 51,059 61,787

more diverse and consequently produce more unique memorized
outputs, which can be observed from the figure that the number of
unique memorization increases, reaching a peak at 𝑘=10. However,
when 𝑘 continues to increase, the outputs become more diverse
and differ more from the training data, which leads to a decrease in
the number of unique memorization. As a result, models memorize
less alongside 𝑘 increases from 10 to 40.
Output length and the number of outputs. Longer outputs can
expose more memorized contents according to our experiments.
Given a model, we keep other factors unchanged and vary the max-
imal number of tokens of the outputs: 256, 512, 768, and 1024. The
results are shown in Table 3. When the length of outputs increases,
the number of unique memorization also increases. This trend is
consistent for both models on different numbers of outputs. The
impact of output length is larger on the larger model. Specifically,
given the same setting (5,000 examples and increase the output
length from 256 to 1024), the number of unique memorization in-
creases by 7,365 (from 6,666 to 14,031 for CodeParrot-small, while
increases by 12,785 (from 9,785 to 22,570) for CodeParrot.

Table 3 also shows that when we extract more outputs from
the models, the number of unique memorization increases as well.
We let the CodeParrot model to generate 10 million outputs (512
tokens each) and plot the trend of the number of unique memo-
rization with the number of outputs in Figure 1b. The blue curve
shows the total number of unique memorization, while the orange
curve shows the number of newly identified unique memorization
by generation additional 200,000 outputs each time. We see a ‘di-
minishing return’ pattern: although more memorization can be
identified when more outputs are generated, the number of newly
identified memorization decreases. The 10 million outputs contain
over 8 million unique memorization that is longer than 6 lines.
Occurrences in the training data. Code fragments more fre-
quently appearing in the training data are more likely to be gen-
erated by the code models. We count the number of occurrences
of each memorized content in the training data and the model out-
puts and visualize the distribution in Figure 1c. Spearman’s rank
correlation test obtains a correlation coefficient of 0.804 (𝑝 < 0.01),
indicating a strong positive correlation between the two variables.
We conduct the Pearson correlation test to measure the linear re-
lationship. We obtain a correlation coefficient of 0.752 (𝑝 < 0.01),
which indicates a strong positive linear correlation between the two
variables. The finding implies that when the model is exposed to a
higher frequency of certain contents in its training data, it tends to

Unveiling Memorization in Code Models ICSE ’24, April 14–20, 2024, Lisbon, Portugal

5 10 15 20 25 30 35 40
k values

16
00

0
18

00
0

20
00

0
22

00
0

24
00

0
26

00
0

N
um

be
r

of
 m

em
or

iz
at

io
n

small
regular

(a) How the 𝑘 value affects the memorization
of code models.

0 2 4 6 8
Number of model outputs (million)

0
20

00
00

40
00

00
60

00
00

80
00

00

N
um

be
r

of
 m

em
or

iz
at

io
n Total number of memorization

Number of newly find memorization

(b) How the total number of outputs affect
identified memorization.

0 20000 40000 60000 80000
Frequency in the training data

0
10

00
0

20
00

0
30

00
0

40
00

0

Fr
eq

ue
nc

y
in

 th
e

ou
tp

ut
s y = 0.29x + 41.58

(c) The correlation between the frequency in
the training data and outputs.

Figure 1. Three factors that affect memorization in code models.

memorize it and produces that content more frequently in its out-
puts, highlighting to importance of conducting data de-duplication
before training code models.

Answers to RQ2: We identify five factors affecting memoriza-
tion: (1) the model size given the same architecture; (2) the hy-
perparameter 𝑘 in top-𝑘 sampling; (3) the length of generated
outputs; (4) the number of generated outputs; (5) the frequency
of the code fragment in the training data.

5.3 RQ3. How to infer whether an output
contains memorized information?

Prediction performance. We use the four metrics described in
Section 3.3 to rank the outputs generated by the code models and
analyze the 100 top-ranking outputs. Table 4 shows the ratio of
the top 100 outputs that contain memorization. We find that gener-
ally three out of four metrics can accurately rank the memorized
outputs at the top. Note that, on average, approximately 43% and
57% of 20,000 outputs from CodeParrot-small and CodeParrot
contain memorized information. When the output length is set as
256 tokens, all the top 100 outputs ranked using perplexity, PPL-
PPL ratio, and PPL-zlib ratio, contain memorization. Ranking the
outputs using PPL-zlib ratio achieves the best performance, with
all the top 100 outputs containing memorization. The method of
PPL-PPL ratio is slightly less effective. When the output length is
512, its detection accuracy is 79%. But in other settings, its accuracy
is close to 100%. However, the Average PPL metric is less effective
in detecting memorization, especially on long outputs.

We further analyze what types of memorization are inferred by
these methods. We conduct another annotation study to count the
occurrences of different categories of memorization in the 100 top
ranked outputs for CodeParrot-smallmodel (output length is 256).
We find that all the memorized outputs ranked by the perplexity
and PPL-zlib Ratio are license information. However, using PPL-
PPL ratio can rank more diverse memorization in the top; 12% of
memorized contents contain code logic.

Answers to RQ3: Three out of four metrics can infer memoriza-
tion accurately. The PPL-PPL ratio ranks more diverse memoriza-
tion at the top positions, while memorization highly ranked by
the other metrics is mainly license information.

1 # Bitcoin Cash (BCH) qpz3 <masked value >5nuk
2 # Ether (ETH) - 0x84 <masked value >c9FB
3 # Litecoin (LTC) - Lfk5 <masked value >qPvu
4 # Bitcoin (BTC) - 34L8<masked value >BtTd
5
6 # contact :- nnheo@example.com

Listing 5. An example of output from StarCoder that contains
a substituted email address: ‘nnheo@example.com’. The ad-
dresses of cryptocurrency are still memorized. We only show
the first and last 4 digits to protect privacy.

6 DISCUSSION
6.1 Memorization in Deployed Code Models
We analyze the memorization of two models that have already been
deployed in Meta and IntelliJ IDE: Incoder and StarCoder. Both
Incoder and StarCoder are trained on large-scale datasets (159GB
and 3TB) that cover multiple programming languages. However, the
training data of Incoder is not directly available and the magnitude
of the training data for StarCoder presents significant challenges
when attempting to analyze Type-1 clones. Note that the authors of
the models [29, 41] mention that the training data is curated from
GitHub. Thus, we use the search function provided by GitHub as a
proxy and manually confirm the memorization of these models. If
GitHub returns the exact code snippets (spanning over 6 lines), we
consider an output contains memorization.

For each model, we extract 20,000 outputs using NPG. According
to the finding from RQ3 that the PPL-PPL ratio ranks more diverse
memorization at the top positions, we rank the outputs using the
PPL-PPL ratio and analyze the top 100 outputs. Then, we manually
search GitHub for each line of code in the top 100 outputs. We
find that 81% and 75% of the selected outputs from Incoder and
StarCoder are confirmed to be memorized. Besides, 90.12% and
65.33% of memorization from the two models is related to code
logic. The results reveal that there is risk that the two models can
memorize and expose their training data. This fact can be worrying
especially when models that trained on private repositories (e.g.,
internal code in a company) are deployed for public usage.

Both StarCoder and InCoder adopt preprocessing methods to
remove personal identifiable information and other software secrets
in the training data. They use regular expressions to detect and
substitute emails. The benefit of doing so is reflected in the model
outputs. For example, Listing 5 shows an output from StarCoder.
We search GitHub for this output; GitHub returns the exact code

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun Han, David Lo

except a different email address. We believe this output is memo-
rized from the training data, and it substitutes the email address
in the training data. However, we find that the addresses of cryp-
tocurrency (i.e., the masked values in Listing 5) are still memorized.
This highlights the need of appropriately dealing with more types
of sensitive information in the training data before training code
models and releasing them to the public.

6.2 Suggestions on Memorization in Code
Models

Based on our findings, we provide the following suggestions to deal
with memorization in code models.

1. Data Sources: Users from various platforms such as GitHub and
Stack Overflow should have the right to explicitly indicate whether
their data can be utilized for AI model training. Otherwise, the code
models may memorize the data and expose the data to the other
users. Platforms should support such declarations, allowing users
to specify their preferences at different levels of granularity. For
example, a user may allow the main branch of a repository to be
used for training, but not the development branch as it may include
experimental and unfinished code. To support the declarations,
GitHub can allow users to include a separate file that outlines the
rights associated with a repository or provide an option to specify
the rights in the account settings.

2. Data Collection and Processing: Data collectors should pay
attention to data license information and avoid using data with
strict or unclear licenses for training code models. Appropriate
preprocessing of the dataset is necessary, which may include but
not limited to detecting and removing personal identifiable infor-
mation and other software secrets reasonably. Our study shows
that duplicates in the training data are more likely to be memorized.
Allamanis [11] suggests that duplicate code may cause adverse
effects on code models. Removing duplicates in the training data
can help reduce memorization. Additionally, collectors can employ
defensive methods to prevent privacy attacks (e.g., data poisoning).

3. Additional Information for Outputs: Code model developers
should also offer users sufficient information when they use the
model. For instance, model developers should detect whether an
output is likely to be memorized from the training data. If so, users
should be informed of the output’s origin and its copyright infor-
mation. This not only prevents users from inadvertently violating
open-source regulations but also empowers them to make informed
decisions about the quality of the output. For example, users may
avoid using an output if it is from a poorly-maintained repository.
Furthermore, our study shows that larger models memorize more
contents. Therefore, the service providers of large code models (e.g.,
ChatGPT) should take measures to limit the queries to the model
to prevent potential privacy breaches.

4. Opt-out Mechanisms: Dataset providers should allow users
to determine if their data has been included in a dataset. We also
suggest building a tracking system to build a connection between
a model and its training data. Such a tracking system helps iden-
tify what models include a specific user’s data for training. As
mentioned in Suggestion 1, users should have the right to prevent

Table 4. The performance of different methods in inferring
whether an output contains memorized information. The
numbers represent the ratio of top 100 outputs ranked by
each method; i.e., 1.0 indicates that the method successfully
computes rankings top 100 as memorized source code.

Models
Methods

CodeParrot CodeParrot-S

t=256 t=512 t=256 t=512

Perplexity 1.00 0.92 1.00 1.00
PPL-PPL Ratio 1.00 0.79 0.97 0.98
PPL-zlib Ratio 1.00 1.00 1.00 1.00
Average PPL 0.74 0.24 0.86 0.36

their code from being used in training and be able to provide their
consent. For data that has already been used, users should have
the right to declare or withdraw their consent. Their data should
not only be removed from the dataset but also from the models.
Moreover, it is necessary to develop a certification mechanism to
evaluate whether a model has removed the data from its knowledge
properly.

5. Multidisciplinary Collaborations: We believe that a multidis-
ciplinary approach is essential to effectively address the outcomes
of data memorization in code models. AI researchers can contribute
developing models that minimize memorization while maintain-
ing the model performance. Software engineering researchers can
focus on open-source data management and understand user re-
quirements. Legal professionals provide guidance on copyright
and other regulatory requirements to ensure compliance and the
protection of users’ rights.

6.3 Threats to Validity
Threats to Internal Validity. Internal validity refers to the extent
to which a study is free from errors or biases that could invalidate
the results. Our study leverages Type-1 clone detection to identify
memorization. However, the accuracy of clone detection tool may
affect our results. To mitigate this threat, we choose a state-of-
the-art clone detection tool, Simian [32], which has been used to
analyze code clones between the model output and training data.
Another threat is that using Type-1 clone detection may lead to
under estimation of memorization. For example, a code model may
not fully memorize a code snippet and produce a slightly modified
version of the code snippet. In this case, this output is not treated
as memorization.
Threats to External Validity. External validity refers to the extent
to which the results of a study can be generalized to other settings.
This paper evaluates two code models based on the GPT-2 archi-
tecture, which is widely used in open-source code models [10, 29].
However, the results obtained in this paper may not generalize to
other models. To alleviate this threat, we analyze the memoriza-
tion in two popular code models that are deployed in practice and
demonstrate that they also suffer from memorization issues. We
also plan to conduct experiments on more models and datasets in
the future.

Unveiling Memorization in Code Models ICSE ’24, April 14–20, 2024, Lisbon, Portugal

7 RELATEDWORK
In this section, we present an overview of studies relevant to this
paper, including (1) pre-trained models of code and (2) privacy
concerns in AI models.

7.1 Pre-trained Code Models and Analysis
Large language models like BERT [24, 43] and GPT [17, 54] have
excelled in NLP tasks, inspiring pre-trained models for code. Code-
BERT [28] and a list of similar models (including GraphCode-
BERT [31], CuBERT [39], etc) are developed to produce code em-
beddings to support downstream tasks like defect prediction. Many
code models leverage the GPT architecture [17, 54] to conduct
generation tasks. CodeGPT, which trains the GPT-2 architecture
on CodeSearchNet [38], is proposed as a baseline model in the
CodeXGLUE benchmark [45]. Code models with larger sizes and
better performance are also proposed, like InCoder [29], Code-
Gen [50]. A list of studies [51, 72, 73] have empirically shown the
outstanding performance of these models on various tasks.

Researchers have also studied the limitations of code models and
threats, highlighting the need to study their trustworthiness [44].
One of the limits is that a malicious user can generate adversar-
ial examples [36, 59, 69, 71] by adding semantic preserving trans-
formations [12, 52] to fool code models. Another threat to the
training data is data poisoning. An attacker can simply inject a
small portion of malicious code into the training data to poison the
datasets [40, 55, 65, 70]; consequently, the obtained code models
have backdoors that can be triggered by specific inputs. Data poison
attacks can also harm the performance of code models [49, 61].

Software engineering researchers have noticed the potential is-
sues brought by memorization in code models. Al-Kaswan et al. [8]
discuss the security, privacy, and license implications of memo-
rization in code models. Our paper conducts the first systematic
study of memorization in code models, by categorizing memorized
content, analyzing factors that affect memorization, etc. Rabin et
al. [53] also evaluate memorization in code models, however, their
concept of memorization diverges from ours. In their paper, a code
model learns from noisy dataset by memorizing the noise and fails
to generalize to test data, which is more similar to the notion of
overfitting. Our paper investigates to what extent code models
memorize and output the training data verbatim.

7.2 Privacy Concerns in AI Models
Henderson et al. [35] discuss some ethical challenges in data-driven
dialogue systems, one of which is the potential privacy violation.
Carlini et al. [18] evaluate unintended memorization in Google’s
Smart Compose that can complete emails. Feldman [26] uses the
long-tail theory to explain the memorization behavior of deep learn-
ing models. Zhu et al. [74] analyzes memorization behavior for a
LSTM-based neural language model. One important privacy con-
cern related to memorization is the feasibility of data extraction
attack, which aims to extract the training data from the model. An
important privacy threat related to memorization is the data extrac-
tion attack, which aims to extract the training data from the model.
Carlini et al. [19] extract around 600 examples of memorization
from the GPT-2 model like URLs, phone numbers, etc. Al-Kaswan
et al. [9] propose a targeted attack on extracting data from the

GPT-Neo model. To the best of our knowledge, our paper presents
the first empirical study of memorization in large pre-trained code
models. Another important privacy concern is the membership
inference attack (MIA), which aims to infer whether a specific data
sample is used to train a model. Shokri et al. [57] propose a black-
box MIA method on machine learning-based classification models.
Hisamoto et al [37] operate MIA on machine translation systems.
Chen et al. [20] produces a taxonomy of membership inference
attacks against various generative models. Mireshghallah et al. [46]
use MIA to quantify the privacy risk of masked language models
like BERT. Researchers also propose defensive method to mitigate
the risks by MIA. For example, Tang et al. [62] propose to use
model ensemble to mitigate the MIA risk. Nasr et al. [48] leverage
adversarial regularization to enhance membership privacy.

8 CONCLUSION AND FUTUREWORK
This paper conducts a comprehensive study to examine the memo-
rization in large pre-trained code models. We develop a taxonomy
for memorized contents, consisting of 3 primary categories and
14 subcategories. The study uncovers several key factors affecting
memorization: the model size, the length of outputs, etc. We also
discover a strong positive correlation between the frequency of an
output’s appearance in the training data and that in model outputs.
This suggests that eliminating duplicates in the training data could
potentially reduce memorization. Furthermore, we identify effec-
tive metrics that accurately determine whether an output contains
memorized contents and offer recommendations on how to address
the issue of memorization in code models. Additionally, we evaluate
memorization in two popular models that are already deployed.

In future work, we plan to study larger code models and more
programming languages.We also plan to explore different strategies
to mitigate memorization in code models.

The replication package is provided for replication at
https://github.com/yangzhou6666/Privacy-in-Code-
Models, which should not be used for malicious purposes
like conducting data extraction attacks.

ACKNOWLEDGMENT
This research / project is supported by the National Research Foun-
dation, under its Investigatorship Grant (NRF-NRFI08-2022-0002).
Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not re-
flect the views of National Research Foundation, Singapore. This
work was supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT) (No.
2021R1A5A1021944 and 2021R1I1A3048013). Additionally, the re-
search was supported by Kyungpook National University Research
Fund, 2020.

REFERENCES
[1] [n. d.]. codeparrot (CodeParrot). https://huggingface.co/codeparrot
[2] [n. d.]. GitHub copilot · your AI pair programmer. https://github.com/features/

copilot
[3] [n. d.]. Introducing chatgpt. https://openai.com/blog/chatgpt
[4] [n. d.]. A Massively Spiffy Yet Delicately Unobtrusive Compression Library.

https://zlib.net/. Accessed on March 27, 2023.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun Han, David Lo

[5] [n. d.]. What is chatgpt? https://help.openai.com/en/articles/6783457-what-is-
chatgpt

[6] 2023. Samsung employees accidentally leaked company secrets via chatgpt:
Here’s what happened. https://gizmodo.com/chatgpt-ai-samsung-employees-
leak-data-1850307376

[7] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668.

[8] Ali Al-Kaswan and Maliheh Izadi. 2023. The (ab)use of Open Source Code to
Train Large Language Models. arXiv:2302.13681 [cs.SE]

[9] Ali Al-Kaswan, Maliheh Izadi, and Arie van Deursen. 2023. Targeted At-
tack on GPT-Neo for the SATML Language Model Data Extraction Challenge.
arXiv:2302.07735 [cs.CL]

[10] Loubna Ben Allal, Raymond Li, and Denis Kocetkov et al. 2023. SantaCoder:
don’t reach for the stars! arXiv:2301.03988 [cs.SE]

[11] Miltiadis Allamanis. 2019. The Adverse Effects of Code Duplication in Machine
Learning Models of Code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Athens, Greece) (Onward! 2019). Association for Computing Machinery,
New York, NY, USA, 143–153. https://doi.org/10.1145/3359591.3359735

[12] Leonhard Applis, Annibale Panichella, and Arie van Deursen. 2021. Assessing
Robustness of ML-Based Program Analysis Tools using Metamorphic Program
Transformations. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1377–1381. https://doi.org/10.1109/ASE51524.2021.
9678706

[13] Setu Kumar Basak, Lorenzo Neil, Bradley Reaves, and Laurie Williams. 2023.
SecretBench: ADataset of Software Secrets. In Proceedings of the 20th International
Conference on Mining Software Repositories (MSR ’23). 5 pages.

[14] Andrew Begel and Thomas Zimmermann. 2014. Analyze This! 145 Questions for
Data Scientists in Software Engineering. In Proceedings of the 36th International
Conference on Software Engineering (Hyderabad, India) (ICSE 2014). Association
for Computing Machinery, New York, NY, USA, 12–23. https://doi.org/10.1145/
2568225.2568233

[15] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled
sampling for sequence prediction with recurrent neural networks. Advances in
neural information processing systems 28 (2015).

[16] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-
Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. https:
//doi.org/10.5281/zenodo.5297715 If you use this software, please cite it using
these metadata..

[17] Tom Brown, Benjamin Mann, and Nick et al. Ryder. 2020. Language Models
are Few-Shot Learners. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.
Curran Associates, Inc., 1877–1901.

[18] Nicholas Carlini, Chang Liu, ’Ulfar Erlingsson, Jernej Kos, and Dawn Song. 2019.
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks. In Proceedings of the 28th USENIX Conference on Security Symposium
(SEC’19). USENIX Association, USENIX Association, Santa Clara, CA, USA, 267–
284.

[19] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
Alina Oprea, and Colin Raffel. 2021. Extracting Training Data from Large Lan-
guage Models. In USENIX Security Symposium.

[20] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. 2020. GAN-Leaks: A Taxon-
omy of Membership Inference Attacks against Generative Models. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security
(Virtual Event, USA) (CCS ’20). Association for Computing Machinery, New York,
NY, USA, 343–362. https://doi.org/10.1145/3372297.3417238

[21] Mark Chen, Jerry Tworek, andHeewoo Jun et al. 2021. Evaluating Large Language
Models Trained on Code. CoRR abs/2107.03374 (2021). arXiv:2107.03374 https:
//arxiv.org/abs/2107.03374

[22] Stanley F. Chen and Joshua Goodman. 1999. An empirical study of smoothing
techniques for language modeling. Computer Speech and Language 13, 4 (1999),
359–394. https://doi.org/10.1006/csla.1999.0128

[23] Matteo Ciniselli, Luca Pascarella, and Gabriele Bavota. 2022. To What Extent
Do Deep Learning-Based Code Recommenders Generate Predictions by Cloning
Code from the Training Set?. In Proceedings of the 19th International Conference
on Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR ’22). Association
for Computing Machinery, New York, NY, USA, 167–178. https://doi.org/10.
1145/3524842.3528440

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[25] Delton Ding. 2021. GitHub Copilot provided me with a picture of someone’s
ID card? PIC.TWITTER.COM/RRLE1UXF6U. https://twitter.com/DeltonDing/
status/1423651446340259840

[26] Vitaly Feldman. 2020. Does Learning Require Memorization? A Short Tale about
a Long Tail. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (Chicago, IL, USA) (STOC 2020). Association for Computing
Machinery, Association for Computing Machinery, New York, NY, USA, 954–959.
https://doi.org/10.1145/3357713.3384290

[27] Runhan Feng, Ziyang Yan, Shiyan Peng, and Yuanyuan Zhang. 2022. Auto-
mated Detection of Password Leakage from Public GitHub Repositories. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). 175–186.
https://doi.org/10.1145/3510003.3510150

[28] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, 1536–1547.

[29] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code Infilling and Synthesis. In The Eleventh International
Conference on Learning Representations. https://openreview.net/forum?id=hQwb-
lbM6EL

[30] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and
Connor Leahy. 2020. The Pile: An 800GB Dataset of Diverse Text for Language
Modeling. arXiv preprint arXiv:2101.00027 (2020).

[31] DayaGuo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou,
Nan Duan, Alexey Svyatkovskiy, Shengyu Fu andz Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021.

[32] Simon Harris. n.d.. Simian. https://www.harukizaemon.com/simian.
[33] Junda He, Zhou Xin, Bowen Xu, Ting Zhang, Kisub Kim, Zhou Yang, Ferdian

Thung, Ivana Irsan, and David Lo. 2023. Representation Learning for Stack
Overflow Posts: How Far are We? arXiv:2303.06853 [cs.SE]

[34] Junda He, Bowen Xu, Zhou Yang, DongGyun Han, Chengran Yang, and David
Lo. 2022. PTM4Tag: Sharpening Tag Recommendation of Stack Overflow Posts
with Pre-Trained Models (ICPC ’22). Association for Computing Machinery, New
York, NY, USA, 1–11. https://doi.org/10.1145/3524610.3527897

[35] Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke,
Genevieve Fried, Ryan Lowe, and Joelle Pineau. 2018. Ethical Challenges in
Data-Driven Dialogue Systems. In Proceedings of the 2018 AAAI/ACM Conference
on AI, Ethics, and Society (New Orleans, LA, USA) (AIES ’18). Association for
Computing Machinery, Association for Computing Machinery, New York, NY,
USA, 123–129. https://doi.org/10.1145/3278721.3278777

[36] JordanHenkel, GouthamRamakrishnan, ZiWang, AwsAlbarghouthi, Somesh Jha,
and Thomas Reps. 2022. Semantic Robustness of Models of Source Code. In 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). 526–537. https://doi.org/10.1109/SANER53432.2022.00070

[37] Sorami Hisamoto, Matt Post, and Kevin Duh. 2020. Membership Inference Attacks
on Sequence-to-Sequence Models: Is My Data In Your Machine Translation
System? Transactions of the Association for Computational Linguistics 8 (2020),
49–63. https://doi.org/10.1162/tacl_a_00299

[38] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[39] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and evaluating contextual embedding of source code. In International
Conference on Machine Learning. PMLR, 5110–5121.

[40] Jia Li, Zhuo Li, Huangzhao Zhang, Ge Li, Zhi Jin, Xing Hu, and Xin Xia. 2022.
Poison Attack and Defense on Deep Source Code Processing Models. https:
//doi.org/10.48550/ARXIV.2210.17029

[41] Raymond Li, Loubna Ben Allal, and Yangtian Zi et al. 2023. StarCoder: may the
source be with you! arXiv:2305.06161 [cs.CL]

[42] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundare-
san. 2022. Automating Code Review Activities by Large-Scale Pre-Training. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
1035–1047. https://doi.org/10.1145/3540250.3549081

[43] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).
arXiv:1907.11692 http://arxiv.org/abs/1907.11692

[44] David Lo. 2023. Trustworthy and Synergistic Artificial Intelligence for Software
Engineering: Vision and Roadmaps. arXiv:2309.04142 [cs.SE]

Unveiling Memorization in Code Models ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[45] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021). arXiv:2102.04664

[46] Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-
Kirkpatrick, and Reza Shokri. 2022. Quantifying Privacy Risks of Masked Lan-
guage Models Using Membership Inference Attacks. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Abu Dhabi, United Arab Emirates, 8332–8347.
https://aclanthology.org/2022.emnlp-main.570

[47] Vijayaraghavan Murali, Chandra Maddila, Imad Ahmad, Michael Bolin, Daniel
Cheng, Negar Ghorbani, Renuka Fernandez, and Nachiappan Nagappan. 2023.
CodeCompose: A Large-Scale Industrial Deployment of AI-assisted Code Author-
ing. arXiv preprint arXiv:2305.12050 (2023).

[48] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2018. Machine Learning with
Membership Privacy Using Adversarial Regularization. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (Toronto,
Canada) (CCS ’18). Association for Computing Machinery, New York, NY, USA,
634–646. https://doi.org/10.1145/3243734.3243855

[49] Phuong T. Nguyen, Claudio Di Sipio, Juri Di Rocco, Massimiliano Di Penta, and
Davide Di Ruscio. 2021. Adversarial Attacks to API Recommender Systems:
Time to Wake Up and Smell the Coffee?. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 253–265. https://doi.org/
10.1109/ASE51524.2021.9678946

[50] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. In The Eleventh Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
iaYcJKpY2B_

[51] Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen, Jidong Ge, and Bin
Luo. 2023. An Empirical Comparison of Pre-Trained Models of Source Code.
arXiv:2302.04026 [cs.SE]

[52] Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and
Mohammad Amin Alipour. 2021. On the generalizability of Neural Program Mod-
els with respect to semantic-preserving program transformations. Information
and Software Technology 135 (2021), 106552.

[53] Md Rafiqul Islam Rabin, Aftab Hussain, Mohammad Amin Alipour, and Vincent J.
Hellendoorn. 2023. Memorization and generalization in neural code intelligence
models. Information and Software Technology 153 (2023), 107066. https://doi.
org/10.1016/j.infsof.2022.107066

[54] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[55] G. Ramakrishnan and A. Albarghouthi. 2022. Backdoors in Neural Models of
Source Code. In 2022 26th International Conference on Pattern Recognition (ICPR).
IEEE Computer Society, Los Alamitos, CA, USA, 2892–2899. https://doi.org/10.
1109/ICPR56361.2022.9956690

[56] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[57] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership Inference Attacks Against Machine Learning Models. In 2017 IEEE Sym-
posium on Security and Privacy (SP). 3–18. https://doi.org/10.1109/SP.2017.41

[58] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023.
An Analysis of the Automatic Bug Fixing Performance of ChatGPT.
arXiv:2301.08653 [cs.SE]

[59] Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan,
Gaoyuan Zhang, and Una-May O’Reilly. 2021. Generating Adversarial Com-
puter Programs using Optimized Obfuscations. ICLR 16 (2021), 209–226.

[60] Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. 2023.
An Empirical Study of Deep Learning Models for Vulnerability Detection.
arXiv:2212.08109 [cs.SE]

[61] Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. 2022. CoProtector:
Protect Open-Source Code against Unauthorized Training Usage with Data Poi-
soning. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon,
France) (WWW ’22). Association for Computing Machinery, New York, NY, USA,
652–660. https://doi.org/10.1145/3485447.3512225

[62] Xinyu Tang, Saeed Mahloujifar, Liwei Song, Virat Shejwalkar, Milad Nasr, Amir
Houmansadr, and Prateek Mittal. 2022. Mitigating membership inference attacks
by {Self-Distillation} through a novel ensemble architecture. In 31st USENIX
Security Symposium (USENIX Security 22). 1433–1450.

[63] Roberto Torres. 2022. GitHub copilot adds 400K subscribers in firstmonth. https://
www.ciodive.com/news/github-copilot-microsoft-software-developer/628587/

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[65] Yao Wan, Shijie Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Dezhong Yao,
Hai Jin, and Lichao Sun. 2022. You See What I Want You to See: Poisoning
Vulnerabilities in Neural Code Search. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 1233–1245. https://doi.org/10.1145/
3540250.3549153

[66] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021.

[67] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Going:
Fixing 162 out of 337 bugs for 0.42 each using ChatGPT. arXiv:2304.00385 [cs.SE]

[68] Chengran Yang, Bowen Xu, Ferdian Thung, Yucen Shi, Ting Zhang, Zhou Yang,
Xin Zhou, Jieke Shi, Junda He, Donggyun Han, and David Lo. 2023. Answer
Summarization for Technical Queries: Benchmark and New Approach. Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3551349.
3560421

[69] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-
Trained Models of Code. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Com-
puting Machinery, New York, NY, USA, 1482–1493. https://doi.org/10.1145/
3510003.3510146

[70] Zhou Yang, Bowen Xu, Jie M. Zhang, Hong Jin Kang, Jieke Shi, Junda He, and
David Lo. 2023. Stealthy Backdoor Attack for Code Models. https://doi.org/10.
48550/ARXIV.2301.02496

[71] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models of
code. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020).

[72] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An Extensive Study on Pre-Trained Models for Program
Understanding and Generation. In Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 39–51.
https://doi.org/10.1145/3533767.3534390

[73] Xin Zhou, DongGyun Han, and David Lo. 2021. Assessing Generalizability of
CodeBERT. In 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 425–436. https://doi.org/10.1109/ICSME52107.2021.00044

[74] Derui Zhu, Jinfu Chen, Weiyi Shang, Xuebing Zhou, Jens Grossklags, and
Ahmed E. Hassan. 2021. DeepMemory: Model-based Memorization Analysis of
Deep Neural Language Models. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 1003–1015. https://doi.org/10.1109/
ASE51524.2021.9678871

