
Empir Software Eng (2016) 21:565–604
DOI 10.1007/s10664-015-9369-5

Automatic identifier inconsistency detection using code
dictionary

Suntae Kim · Dongsun Kim

Published online: 7 March 2015
© Springer Science+Business Media New York 2015

Abstract Inconsistent identifiers make it difficult for developers to understand source code.
In particular, large software systems written by several developers can be vulnerable to iden-
tifier inconsistency. Unfortunately, it is not easy to detect inconsistent identifiers that are
already used in source code. Although several techniques have been proposed to address
this issue, many of these techniques can result in false alarms since such techniques do not
accept domain words and idiom identifiers that are widely used in programming practice.
This paper proposes an approach to detecting inconsistent identifiers based on a custom
code dictionary. It first automatically builds a Code Dictionary from the existing API doc-
uments of popular Java projects by using an Natural Language Processing (NLP) parser.
This dictionary records domain words with dominant part-of-speech (POS) and idiom iden-
tifiers. This set of domain words and idioms can improve the accuracy when detecting
inconsistencies by reducing false alarms. The approach then takes a target program and
detects inconsistent identifiers of the program by leveraging the Code Dictionary. We pro-
vide CodeAmigo, a GUI-based tool support for our approach. We evaluated our approach on
seven Java based open-/proprietary- source projects. The results of the evaluations show that
the approach can detect inconsistent identifiers with 85.4 % precision and 83.59 % recall
values. In addition, we conducted an interview with developers who used our approach, and
the interview confirmed that inconsistent identifiers frequently and inevitably occur in most
software projects. The interviewees then stated that our approach can help to better detect
inconsistent identifiers that would have been missed through manual detection.

Communicated by: Giulio Antoniol

S. Kim
Department of Software Engineering, Chonbuk National University, 567 Baekje-daero,
Deokjin-gu, Jeollabuk-do 561-756, Jeonju-si, Republic of Korea
e-mail: jipsin08@gmail.com

D. Kim (�)
Computer Science and Communications Research Unit, Faculty of Science,
Technology and Communication, and Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg, 4 rue Alphonse Weicker,
L-2721 Luxembourg-Ville, Luxembourg
e-mail: dongsun.kim@uni.lu

mailto:jipsin08@gmail.com
mailto:dongsun.kim@uni.lu

566 Empir Software Eng (2016) 21:565–604

Keywords Inconsistent identifiers · Code dictionary · Source code · Refactoring · Code
readability · Part-of-speech analysis

1 Introduction

The use of consistent identifiers (such as class/variable/method names) is one of the key
aspects for understanding source code. Developers heavily rely on identifiers, which cover
about 70 % of the source code elements, to understand programs (Deiβenböck and Pizka
2005). However, inconsistent identifiers can impede program comprehension (Lawrie et al.
2006) and can thus hinder software maintenance, which is a very expensive activity in soft-
ware development. Inconsistent identifiers can also negatively impact automated tools that
were designed to help program understanding and maintenance such as automated code
summarization techniques, feature location techniques, etc.

For example, suppose that developers have made the two methods makeObject()
and createObject().1 Readers of the identifiers might be confused due to similarity
between the meaning of the words make and create regardless of the developers’ intentions.
In addition, this issue can arise in the use of terms states and statuswhich have similar
letter sequences but have different meanings.2, 3 These inconsistencies may cause potential
maintenance problems or defects in a program.

In the software industry, a large number of practitioners strongly emphasize the need
for identifier consistency. For example, Martin (2008) proposed for programmers to use
a single word per concept and to have consistency throughout the entire project. He also
stated that “a consistent lexicon is a great boon to the programmers who must use your
code” (Martin 2008). He pointed out code readers often rely on names in the source code
to understand programs. Unfortunately, most programs suffer from inconsistent identifiers
since contemporary software projects are mostly developed by a large group of developers.
In addition, a long revision history can lead to inconsistency as well (Higo and Kusumoto
2012). As new developers take over legacy programs, they often make use of identifiers that
are inconsistent with those in the preexisting code.

Several techniques have been developed to detect inconsistent identifiers. One stream
of research has presented techniques that can map identifiers into their intended concepts
through manual or automatic mechanisms to find inconsistent identifiers (Deiβenböck and
Pizka 2005; Lawrie et al. 2006; Abebe et al. 2008; Hughes 2004). However, these mecha-
nisms focus only on semantic inconsistency without considering diverse POS usages of each
word. Another stream has established a set of vocabulary or ontology derived from source
code. While these techniques proactively help a developer to write a code with consistent
identifiers (Delorey et al. 2009; Lawire et al. 2010; Abebe and Tonella 2010; Falleri et al.
2010; Abebe and Tonella 2013; Host and Ostvold 2009), they do not detect inconsistent use
of identifiers within the actual source code of a single project.

This paper presents an approach that detects inconsistent identifiers based on a custom
Code Dictionary that has been enhanced through our previous work (Lee et al. 2012). This
approach discovers inconsistent code names using natural language processing. In order
to improve the precision of the detection, we first build a Code Dictionary by scanning

1http://goo.gl/p6Gzmd and http://goo.gl/7cCV8n
2http://www.dlib.vt.edu/projects/MarianJava/edu/vt/marian/server/status.java
3https://github.com/tangmatt/word-scramble/blob/master/system/Status.java

http://goo.gl/p6Gzmd
http://goo.gl/7cCV8n
http://www.dlib.vt.edu/projects/MarianJava/edu/vt/marian/server/status.java
https://github.com/tangmatt/word-scramble/blob/master/system/Status.java

Empir Software Eng (2016) 21:565–604 567

the application programming interface (API) documents of 14 popular Java projects. This
dictionary defines the domain words according to their POS and idiom words in order to
understand howwords are used in programming. Such techniques help to avoid false alarms.
Based on the Code Dictionary, our approach then takes the source code of a program as
an input, scans all the identifiers, and discover inconsistent identifiers. In this paper, three
types of inconsistencies are detected: semantic, syntactic, and POS inconsistencies. These
respectively represent 1) two different words that indicate the same concept, 2) two words
that have similar letter sequences, and 3) a word used as an inconsistent POS. This paper also
introduces the three types of inconsistencies by revising concepts and definitions presented
by existing work.

To evaluate our approach, we first carried out a preliminary sensitivity analysis of the
thresholds in order to detect more inconsistent identifiers. Then, we applied it to seven
open/proprietary source projects to detect inconsistent identifiers. The approach detected
3,826 inconsistencies4 from 55,526 identifiers collected from the projects. To evaluate the
precision and recall of detection results, we conducted a user study involving 16 developers.
The result of our study shows that our approach detected inconsistent identifiers with a
precision of 85.4 % and a recall of 83.59 %. Also, we carried out a semi-structured interview
with developers in order to investigate the usefulness of our approach. They stated that
there are many inconsistent identifiers and that these make programs difficult to understand.
However, inconsistency is also difficult to detect manually. Therefore, our approach might
be useful for identifying inconsistent identifiers to make a program easier to understand.

Our contributions can be summarized as follows:

1. Inconsistency detection based on a Code Dictionary: We present a novel approach
for automatic inconsistent identifier detection that leverages the Code Dictionary which
defines the domain words and idioms in order to reduce false alarms.

2. Empirical evaluation: We present the results of an empirical evaluation by applying
our approach to seven open/proprietary source projects.

All materials used in this paper and for the results of the detailed experiment are publicly
available at our project website.5

The remainder of the paper is organized as follows: Section 2 presents the background on
Java naming convention and on identifier inconsistency. Section 3 introduces our approach
for detection of inconsistent identifiers in source code. Section 4 presents the prelimi-
nary study and the three-step evaluation of the proposed approach. After discussing a set
of related work in Section 5, we conclude this paper and also discuss future work in
Section 6.

2 Background

This section presents Java naming conventions that provide guidance on how to name iden-
tifiers, and then formulates several types of inconsistencies frequently discovered in source
code.

4Note that an identifier can include multiple inconsistencies. The total number of unique identifiers
containing at least one inconsistency is 1,952.
5https://sites.google.com/site/detectinginconsistency/

https://sites.google.com/site/detectinginconsistency/

568 Empir Software Eng (2016) 21:565–604

2.1 Java Naming Convention

A naming convention defines a specific way to determine identifiers in programs. These
conventions are useful when several developers work collaboratively to write a program
while attempting to maintain consistency in the identifiers since this can make the source
code easier to understand. The Java naming convention published by Sun Microsystems
(acquired by Oracle) (1999) introduces common naming guidelines of Java identifiers.
According to these guidelines, all identifiers should be descriptive and should observe the
following grammatical rules, depending on the types:

– Classes and Interfaces should be nouns (a noun phrase) starting with a capital letter.
– Methods should be verbs (a verb phrase) and should start with a lowercase.
– Attributes and Parameters should be a noun phrase with a lowercase first letter.
– Constants should be a noun phrase with all letters as upper cases separated by

underscores.

In addition, composite identifiers should be written in a camel case (mixed with upper
and lower cases). For example, a class identifier WhitespaceTokenizer is a noun phrase of
two words: Whitespace and Tokenizer. The method identifier getElementForView() can be
split into get, Element, For and View, which compose a verb phrase with a prepositional
phrase.

Note that programmers in particular tend to extensively rely on naming conventions for
identifiers in order to write more readable source code in Java programs (Lawrie et al. 2007).
This implies that the use of consistent words in program identifiers is important for software
maintenance. Suppose that a new developer comes in to collaborate on a software project.
To understand how it works, she/he needs to read a part of the source code. Reading the
method and the attribute names usually helps to gain an understanding. On the other hand,
what if different words are used in parameter names that indicate the same concept? What if
a single word is used for many different concepts? This makes the program difficult to read.

2.2 Three Types of Inconsistent Identifiers

This section formulates three inconsistency types: semantic, syntactic, and POS, based
on the concepts presented by previous work. First, the semantic inconsistency indicates
the use of diverse synonyms in multiple identifiers. For example, for the class names,
LdapServer and LdapService recoded in Issue [DIRSERVER-1140],6 Server and
Service are different words, but they imply a similar meaning regardless of the program-
mer’s intention. The issue submitter (and patch creator as well) stated that this inconsistency
was propagated to another plug-in (ApacheDS plug-ins for Studio) via a resource file
(server.xml) and in the documentation as well. Even if a writer distinguishes the two
words based on their definition consistently throughout the project (Madani et al. 2010),
program readers may not precisely catch the slight difference between the words and this
can eventually result in a misunderstanding. Similar issues are observed in a wide range of
programs, such as in a pair of Real and Scala described in Issue [Math-707].7 In addi-
tion, this inconsistency is common in many software projects in which many developers are
involved (Goodliffe 2006).

6Apache Directory Project: https://issues.apache.org/jira/browse/DIRSERVER-1140
7Apache Commons Math: https://issues.apache.org/jira/browse/MATH-707

https://issues.apache.org/jira/browse/DIRSERVER-1140
https://issues.apache.org/jira/browse/MATH-707

Empir Software Eng (2016) 21:565–604 569

The semantic inconsistency includes the concept synonyms as defined in Deiβenböck
and Pizka (2005) and Lawrie et al. (2006). Additionally, it sets constraints for the two
words which should be of the same POS. This constraint originates from the definition of a
synonym, which is that, “synonyms belong to the same part of speech”.8 In addition, dictio-
naries such as Oxford,9 Collins Cobuild,10 Dictionary.com11 and WordNet (2014) classify
synonyms in terms of the POS. When searching for synonyms, adding the POS constraints
in the definition contributes to an effective reduction in the search space from all possible
POSes to one specific POS. In WordNet, for example, the word use in WordNet has 17 syn-
onyms as a noun, and 8 synonyms as a verb. The POS constraints reduce the search space
from 25 to 8 if the POS is recognized as a verb.

The following definitions formulate the semantic inconsistency:

Definition 1 A word set W is defined as a collection of any finite sequence of the English
alphabet.

Definition 2 C is a set of concepts.

Definition 3 An identifier set ID is defined as a collection of any finite token sequence
of w ∈ W and literals (digits DIGIT and special characters SC). For example, id ∈ ID

can be (t1t2t3 . . . tN) where ti ∈ T = W ∪ DIGIT ∪ SC. Its index function is defined as
fi : ID × N → T .

Definition 4 A tagging function ft is defined as ft : ID × N → POS where POS is
a set of {noun, adjective, verb, adverb, preposition, conjunction, non-word terminal}. For
example, ft (“setToken”,1)= ft (t1 = “set”) = verb.

Definition 5 A concept map12 D is defined by a map D : W × POS → 2C .

Definition 6 (Semantic Inconsistency) Two identifiers, id1 and id2, have semantic incon-
sistency if ∃w1 = fi(id1, i), w2 = fi(id2, j), and D(w1, tag) = D(w2, tag) where
tag ∈ POS and w1 �= w2.

Second, syntactic inconsistency occurs when multiple identifiers use words with a sim-
ilar letter sequence. The identifier pairs getUserStates() and getUserStatus(),
ApplicationConfiguration and ApplicationConfigurator,13 memcache
and memcached,14 are examples of this inconsistency. Code readers might be confused by
a pair of words that seem identical due to having 1) similar length, 2) small edit distance,
and 3) long sequences. Haber and Schindler (1981) and Monk and Hulme (1983) performed
research that concludes that readers are more susceptible to confusion if words have the

8Synonyms Definition:http://en.wikipedia.org/wiki/Synonym
9Oxford Dictionary, http://www.oxforddictionaries.com/
10Collins Cobuild Dictionary:http://www.collinsdictionary.com/dictionary/english
11Dictionary.com:http://dictionary.reference.com/
12To define this map, any English dictionary can be used. In this paper, we usedWordNet (2014) as described
in Section 3.2.2.
13https://bugs.eclipse.org/bugs/show bug.cgi?id=369942
14https://github.com/Chassis/memcache/issues/2

http://en.wikipedia.org/wiki/Synonym
http://www.oxforddictionaries.com/
http://www.collinsdictionary.com/dictionary/english
http://dictionary.reference.com/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=369942
https://github.com/Chassis/memcache/issues/2

570 Empir Software Eng (2016) 21:565–604

similar shapes, including word-length, especially for long words. Writing source code is
similar to general writing, especially for writing words. This is also applicable to source
code (Martin 2008). Syntactic inconsistency is caused by typos and inconsistent use of sin-
gular/plural forms in naming methods. In addition, syntactically inconsistent identifiers are
commonly generated by unfaithful naming of variables (e.g., arg1, arg2, param1 and
param2).

Syntactic inconsistency may result in maintenance problems, where code readers can
misunderstand, particularly when syntactically inconsistent words are discovered in the
dictionary (e.g., states and status) because their meanings are clearly different. In
addition, when automatically renaming words using “find and replace”, the mechanism
would not work properly, since spell checkers may not work when these identifiers could
have a valid in spelling. Code generation is another example, e.g., Issue [Bug 108384]15

of Eclipse describes how similar names used in a program can lead to duplicate identifiers
when generating another program based on the source code.

We defined syntactic inconsistency as follows:

Definition 7 (Syntactic Inconsistency) Two identifiers, id1 and id2, are syntacti-
cally inconsistent if ∃w1 = fi(id1, i), w2 = fi(i2, j), and C(w1, w2) =

max{L(w1),L(w2)}
(|L(w1)−L(w2)|+1)·DIST (w1,w2)

> K . K is closeness threshold and DIST computes an edit

distance between two words and is defined as DIST : W × W → Z
+. L counts the

number of letters in a word and is defined as L : W → N. C(w1, w2) is not defined if
DIST (w1, w2) = 0.

The above definition implies that human developers can become more confused if two
long words have a small edit distance and similar word length (Haber and Schindler 1981;
Monk and Hulme 1983). Note that this definition does not include the exception where noun
words have the same root after stemming, for example, accent and accents.

Third, POS inconsistency implies that identifiers use homonyms or violate naming con-
ventions. There are two sub-types of POS inconsistencies: 1) Word-POS inconsistency and
2) Phrase-POS inconsistency. Word-POS inconsistency happens when the same word is
used for different POSes in multiple identifiers. For example, the word short in the method
identifier getShortType() and in the class identifier ShortName is respectively used as a noun
denoting a short data type and as an adjective.

Caprile and Tonella (1999) observed that developers tend to consistently use a single POS
of a word throughout a project even when the word can have diverse POSes. For example,
the word free can be used as a verb, adjective, and adverb in natural language while only the
use as a verb of the word was observed in a specific software project. One of the real cases
for this inconsistency is shown in an issue report16 that indicates that the word return in a
variable name returnString can be confusing since return is often used in a method
identifier as a verb. Consequently, the corresponding patch17 changes returnString to
resultString.

Definition 8 (Word-POS Inconsistency) Two identifiers, id1 and id2, are Word-POS
inconsistent if ∃w = fi(id1, i) = fi(id2, j) and ft (id1, i) �= ft (id2, j).

15https://bugs.eclipse.org/bugs/show bug.cgi?id=108384
16https://github.com/scrom/Experiments/issues/32
17https://github.com/scrom/Experiments/commit/04dfbf7818626f9818379eb20e4c87e755407687

https://bugs.eclipse.org/bugs/show_bug.cgi?id=108384
https://github.com/scrom/Experiments/issues/32
https://github.com/scrom/Experiments/commit/04dfbf7818626f9818379eb20e4c87e755407687

Empir Software Eng (2016) 21:565–604 571

Phrase-POS inconsistency occurs when identifiers violate the grammatical rules of a Java
naming convention. For example, when Aborted and Restrict are used as class identifiers,
these are inconsistent with the naming convention since they are an adjective and a verb,
respectively. Similarly, when directory() and newParallel() are used as method identifiers,
they violate Phrase-POS consistency since they should be verb phrases.

This convention is shown in the discussion of another issue report,18 where developers
indicate they prefer to conform to POS conventions. For example, between getFirst()
and first(), more developers in the discussion chose the former since the verb prefix
can clarify the meaning of the method.

Definition 9 (Identifier Type & Phrase-POS Rules) ∀i ∈ ID, type function ftype : ID →
T YPE defines i’s identifier type where T YPE = {class, method, attribute}. RPOS :
T YPE → POS defines Phrase-POS rules and fPOS : ID → POS determines the
Phrase-POS of an identifier.

Definition 10 (Phrase-POS Inconsistency) An identifier i ∈ ID is Phrase-POS inconsistent
if fPOS(i) �= RPOS(ftype(i)).

2.3 Challenges

To detect the aforementioned inconsistencies, the following issues should be addressed.

2.3.1 POS Usage

Since the inconsistency detection that is described in Section 2.2 depends on the POS usage,
the method becomes inaccurate if we cannot extract the POS information from the iden-
tifiers. Most contemporary NLP parsers (The Stanford Parser: A statistical parser 2014;
Apache OpenNLP Homepage 2014) can identify the POS usage of the words used in a sen-
tence. However, the method can become confused since several words in the source code are
used in different POS when compared to POS usage in natural languages. Thus, identifying
the POS usage of words used in programs is necessary for inconsistency detection.

2.3.2 Domain Words

In natural languages, some words can be used as different POSes, but computer programs
tend to use a word as a single POS (Caprile and Tonella 1999). For example, the word ‘file’
is frequently used as a noun or as a verb in natural languages. However, it is mostly used
as a noun denoting a notion for data storage in the computer domain. Similarly, words such
as ‘default’, ‘value’, and ‘input’ are generally used as a noun, even they are often used as
several different POSes in natural languages. If we can figure out the dominant POS of each
word in advance, then the detection of inconsistent identifiers can improve.

2.3.3 Idiom Identifiers

Some inconsistent identifiers can be accepted as an exception even if they violate the gram-
matical rules of the naming conventions. For example, the method identifiers size(), length()

18https://github.com/morrisonlevi/Ardent/issues/17

https://github.com/morrisonlevi/Ardent/issues/17

572 Empir Software Eng (2016) 21:565–604

and intVal() used in the Java Development Kit (JDK) or in popular projects do not observe
the grammatical rules but their use is widely accepted in Java programs.

In addition, several words are commonly abbreviated in the computer science domain.
For example, ‘spec’, ‘alloc’, ‘doc’ are used instead of ‘specification’, ‘allocation’ and ‘doc-
ument’. However, NLP parsers cannot recognize whether they are abbreviated words or not.
This decreases the accuracy of the parsed results.

We define the idiom identifiers for each type of inconsistency. For semantic inconsis-
tency, although word w1 has a conflict with word w2 (i.e., D(w1, tag) = D(w2, tag)

for an arbitrary tag), w1 is not detected as an inconsistency if w1 is defined as an idiom.
Similarly, words with syntactic inconsistency can be also accepted. With respect to a POS
inconsistency, we can skip the consistency check if an identifier is included in the idiom set.

2.3.4 Tool Support

It might be difficult for developers to navigate and examine a list of inconsistent identifiers
without GUI-support if there is a large number of inconsistencies. A tool support can alle-
viate this burden, and this tool should be integrated into existing development environment
so that developers can easily find and correct inconsistent identifiers.

3 Approach

This section presents our approach for detecting identifier inconsistency. Figure 1 shows
the overview of our approach. This approach has two phases: 1) building a code dictio-
nary, and 2) detecting inconsistent identifiers. In the first phase, this approach analyzes the
API documents that are trusted by the users and collects the words that are necessary to

Filtering

Parsing API Docs
Code

Dictionary

- Idioms
- Domain Word
- Abbreviated Words

Models
 - Class
 - Attribute
 - Method

Extracting Idiom
Identifiers

Detecting
Domain Word POS

Building
Code Dictionary

Tokenizing &
POS Tagging

Detecting
Inconsistent
Identifiers

Detecting
Inconsistent Identifiers

Inconsistent
Identifiers

User Feedback

Application
Source Code

Adding Abbr.,
Prop. and Conj.

Java/Library API
Documents

Phase 1: Building
 a Code Dictionary

Phase 2: Detecting
 Inconsistent Identifiers

1

2

3

4

1

2

3

Fig. 1 Overview of our approach to inconsistent identifier detection

Empir Software Eng (2016) 21:565–604 573

build a Code Dictionary. This dictionary extracts the domain words with dominant POSes,
idioms, and abbreviated words from the trusted API documents. The second phase scans a
program and finds the inconsistent identifiers. The Code Dictionary built in the first phase
can reduce the frequency of false alarms by filtering out domain words and idioms from
the set of detected identifiers. The remainder of this section explains the details of our
approach.

3.1 Phase 1: Building a Code Dictionary

Our approach first creates a Code Dictionary since common English dictionaries may not
sufficiently deal with identifiers in programs. For example, there exist many idioms and
domain-specific words in the source code of programs, such as file and rollback. Ordinary
NLP parsers often result in confusion during POS tagging. The Code Dictionary is basically
a customized dictionary that maps a word to its POS using exceptional rules. The dictionary
is used to filter out wrong parsing results from the NLP parser in order to increase the preci-
sion of detections. In this phase, this approach first parses the API documents of programs
trusted by a user and collects code identifiers from the documents. Then, it discovers the
POSes of the words used in the collected identifiers. Based on the POS discovery results,
the approach collects the idioms, domain, and abbreviated words to build a Code Dictionary.
Note that this dictionary is built once and can be reused several times.

To build a Code Dictionary, the user can designate his/her own trusted documents. Basi-
cally, this approach collects class, method, and attribute identifiers from 14 API documents,
as shown in Table 1. The user can add other API documents or remove existing documents
in order to customize the Code Dictionary.

3.1.1 Parsing API Documents and Recognizing POSes

This approach LEVERAGES an NLP parser19 to parse an identifier as a sentence. The result
of the parsing is used to collect the POS information of each word in the identifier. The
POS information is important since it helps in the detection of domain words, as described
in Section 2.3.2.

Our approach first collects the code identifiers in the API documents. The identifiers are
tokenized according to the rule of the camel case, also using an underscore as a separator.
For the method identifiers, a period is inserted at the end of the last term to make a complete
sentence since the method identifiers constitute a verb phrase, which is a complete sentence
without a subject. This often helps the NLP parsers to recognize the POSes of words with
greater precision. For example, the identifier of the getWordSet() method is converted into
the phrase, ‘get Word Set.’. Then, the NLP parser analyzes POSes of each word and phrases
within the sentence, resulting in ‘[(VP (VB get) (NP(NNP Word)(NNP Set)(..)))]’, where
VP, VB, NP and NN denote a verb phrase, verb, noun phrase and noun respectively. These
tags are used according to The Penn Treebank Project (2013).

19 Although there are some of the researches on POS-tagging of source code elements (Abebe and Tonella
2010; Binkley et al. 2011; Guapa et al. 2013), they are not publicly available or also used natural language
parser such as Minipar (2014), Stanford Log-linear Part-Of-Speech Tagger Toutanova et al. (2003). In this
paper, we have adopted Stanford Parser (2014) because it is highly accurate for parsing natural language
sentences and broadly used for NLP. In addition, it is publicly available, well-documented and stable.

574 Empir Software Eng (2016) 21:565–604

Table 1 Java/Library API documents for building a code dictionary

Library Version Description

Java Development Kit 1.7.0 Java standard development kit

Apache Ant 1.8.3 Java library and command-line tool for building java project

Apache POI 3.9 APIs for manipulating various file formats based upon Microsoft

Apache Commons-Lang 3.3.1 Collections of extra methods for standard Java libraries

Apache Commons-Logging 1.1.1 Bridge library between different logging implementations

Apache Commons-Collections 4.4 Enhanced library of Java collections framework

Apache JMeter 2.9 Java application for load test and measure performance

Java Mail 1.4.5 Framework to build mail and messaging applications

JDOM 2.0.5 Library for accessing, manipulating, and outputting XML data

JUnit 4.10 Framework to write repeatable unit tests

Apache Log4J 1.2.17 Logging framework library for Java

QuaQua 1.2.17 User Interface library for Java Swing applications

StanfordParser 3.2.0 Library that works out the grammatical structure of sentence

Joda-time 2.2 Java date and time API

3.1.2 Identifying Domain Words

The process used to identify domain words and their major POSes consists of two filters:
a W-Occurrence Filter and a POS Ratio Filter. In the first filter, words occurring less than
T (WO) in the trusted API documents are filtered out from all the candidate words, where
T (WO) is the threshold of the occurrence of a word. This is because domain words are
used more frequently than other non-domain words in code identifiers. The second step
determines the major POS of each domain word. If any POS out of all POSes available for
a word accounts for more than T (PR), the POS is regarded to be the dominant POS, as
described in Section 2.3.2, where T (PR) indicates the threshold ratio used to decide the
dominant POS of a word. If a word passes these two filters, the word is then collected as
a domain word in the Code Dictionary. We have defined the two thresholds, T (WO) and
T (PR), by conducting a preliminary study before the full evaluation (see Section 4).

Figure 2 shows an example of how domain words are collected. Suppose that word1,
word2, and word3 are extracted from the API documents (see Table 1) and are tagged by
the NLP parser. Also, all words are initially classified according to the POS usages. Assume
that T (WO) = 150 and T (PR) = 0.95. Through the first W-Occurrence Filter, word3
is filtered out because all occurrences of the word are less than T (WO). Then, POS Ratio

word1(nn-147, vb-1, adj-1) 98%
word2(nn-273, vb-436) 61%

word3(nn-49, vb-21, adv-8)

word1(nn)
word1(nn-147, vb-1, adj-1)

word2(nn-273, vb-436)

W
-O

ccurrence

 F
ilter

P
O

S R
atio F

ilter. . .
. . .

. . .

T(WO)=150 T(PO)=0.95

Fig. 2 Domain word identification. nn, vb, adj, and adv denote a noun, verb, adjective and adverb,
respectively

Empir Software Eng (2016) 21:565–604 575

Filter eliminates word2 because the highest POS ratio does not occupy the threshold
T (PR). Only words that passed the two filters are stored in the Code Dictionary.

3.1.3 Extracting Idioms

In a manner similar to domain word extraction, our approach uses two subsequent fil-
ters to extract idioms. The F-Occurrence Filter checks if the identifier occurs in at least
T (FOf mw) different API documents, where T (FOf mw) denotes the minimum threshold
for occurrences within the frameworks. In addition, the filter includes occurrence constraints
for the classes, attributes and methods, for which each threshold is indicated as T (FOcls),
T (FOatt) and T (FOmet) respectively. The second filter, Phrase-POS filter, figures out
whether the identifier violates Java naming conventions. If it violates the conventions, the
identifier is collected as an idiom into the Code Dictionary.

Figure 3 shows an example for extracting idioms from the API documents in
Table 1, where

(
T (FOf mw) = 2, T (FOcls) = 3, T (FOatt) = 4

)
and (T (FOmet) = 15).

The DirectoryScanner class identifier cannot pass the F-Occurrence Filter because it is
only discovered in Framework-1 even though its occurrence is over the T (FOcls) thresh-
old. While the ComponentHelper class identifier can pass the F-Occurrence Filter, it cannot
pass the Phrase-POS Filter because it does not violate Java naming convention for the class
identifier. The debug attribute, for example, passes all filters and can be identified as an
idiom due to its occurrence throughout the frameworks and violation of Java naming con-
vention for attributes. In terms of the methods, indexOf() is identified as an idiom because it
is discovered in more than two frameworks with over 15 instances, and it violates the Java
naming conventions. In reality, the method is commonly used and accepted in Java pro-
grams even though it is a violation of naming conventions. Through the preliminary study,
we defined the thresholds for the evaluation.

3.1.4 Collecting Abbreviations

In addition to domain words and idiom identifiers, developers tend to use abbreviations
instead fully writing out long words. For example, they normally use ‘spec’, ‘alloc’, and
‘doc’, instead of ‘specification’, ‘allocation’ and ‘document’. However, most NLP parsers
cannot recognize whether words are abbreviations or not. This decreases the precision of
the parsing results.

To assist the NLP parsers, our approach takes a mapping from abbreviated identifiers
to the original words. We initially identified all words not discovered in WordNet, and
then we eliminated acronyms such as HTTP, FTP and XML because these are intuitive for
developers. We then parsed these as nouns by the NLP parser. After that, we obtained the
13 abbreviations, and identified the full word for each abbreviation as shown in Table 2.

Class:
 ComponentHelper
 . . .

ComponentHelper(1) F
-O

ccurrence F
ilter

P
hrase-P

O
S F

ilter

DirectoryScanner(3)
. . .

debug(2)
target(2)
task(1)

. . .

getID(2)
indexOf(2)
getVersion(1)

. . .

Class

Method

Attribute

Framework-1

ComponentHelper(0)

DirectoryScanner(0)
. . .

debug(1)
target(0)
task(1)

. . .

getID(2)
indexOf(2)
getVersion(1)

. . .

Framework-14

ComponentHelper(3)

DirectoryScanner(3)
. . .

debug(7)
target(4)
task(3)

. . .

getID(25)
indexOf(17)
getVersion(8)

. . .

SUM

. . .

. . .

. . .

Method:
 getID
 indexOf
 . . .

Attribute:
 debug
 target
 . . .

Class:
 N/A

Attribute:
 debug
 . . .
Method:
 indexOf
 . . .

Fig. 3 Idioms identification from API Documents

576 Empir Software Eng (2016) 21:565–604

Table 2 List of Abbreviated Words and Examples

Abbreviated Word Full Word Example Framework

val value get val(), insert val() JDK

dir directory getSrcDir(), getBaseDir() Ant

calc calculate calcSize() POI

concat concatenate concatSystemClassPath() Ant

del delete delFile() Ant

exec execute exec() JDK

execSQL() Ant

gen generate genTile() QuaQua

genKeyPair() JDK

init initialize initAll() POI

initCause() JDK

lib library addLib(), exitAntLib() Ant

inc increase incValue() StanfordParser

spec specification getKeySpec(), getParameterSpec() JDK

alloc allocate allocShapeId() POI

doc document getDoc() JDK

loadDoc() POI

These words were validated by the subjects during the manual evaluation. Although there
are several techniques (Lawire et al. 2010; Madani et al. 2010) that can recover the origi-
nal words from abbreviated code identifiers, our approach uses a manual approach since it
is simple and effective for our purpose. Automatic abbreviation recovery remains a task for
future work.

3.2 Phase 2: Detecting Inconsistent Identifiers

This section describes the second phase of our approach, which is how to detect inconsis-
tent identifiers by using the Code Dictionary. In this phase, our approach first scans the
identifiers in the source code and figures out the POS of each of the words in an identifier.
Then, it detects inconsistencies based on the Code Dictionary and detection rules defined in
Section 2.2.

3.2.1 POS Tagging

Similar to that of the first phase, our approach uses an NLP parser to figure out the POS
of each word in the identifiers. One difference is that the identifiers are collected from the
target program instead of the API documents. In addition, all abbreviated words are replaced
by the full original words according to the mapping in the Code Dictionary.

3.2.2 Detecting Semantic Inconsistency

Semantic inconsistencies occur when more than two different words have a similar meaning
and are both used as the same POS. This leads to confusion when reading a program, and
such cases have been formally defined in Definition 6.

Empir Software Eng (2016) 21:565–604 577

To detect semantic inconsistencies, our approach uses WordNet (2014) to first collect
semantically similar words for a given word used in an identifier. WordNet is a lexical
dictionary that provides root words, senses, and synonyms of a word. This is widely used
when identifying relationships between words (Budanitsky and Hirst 2006; Falleri et al.
2010).

Algorithm 1 describes how our approach identifies semantically similar words. For each
POS usage of a word w (Line 2), WordNet gives a set of synonyms for the given word when
used as a POS (Line 3). If the synonym is observed within the target program (Line 4), sim-
ilarity and reverse similarity are computed (Line 5 and 6). This similarity value represents
how much the synonym synk is tightly coupled with the word w when used as a given POS
posi . The reverse similarity is defined in the opposite manner. Then, if both similarity val-
ues are larger than the similarity threshold T (SEM)20 predefined by the user (Line 7), the
synonyms are collected as semantically similar words (Line 8).

For example, suppose that there are the verb ‘get’, ‘acquire’, and ‘grow’ and these are
used in the target program. The verb ‘get’ has 30 senses. Among them, ‘acquire’ is the
first synonym meaning, which means to ‘come into the possession of something concrete
or abstract’, and ‘grow’ is the 12th synonym meaning ‘come to have or undergo a change
of physical features’. According to the algorithm, the semantic similarity of ‘acquire’ and
‘grow’ to ‘get’ is 1 − (1/30) = 0.96 and 1 − (12/30) = 0.6 respectively. Therefore, we
only consider ‘acquire’ to be a synonym of ‘get’.

Among the semantically similar words, the most frequently used word is considered to
be the base word, and the others are regarded as semantically inconsistent words. Then, the
identifiers containing the inconsistent words are detected as semantic inconsistencies.

Note that several previous techniques (Lawrie et al. 2006; Deiβenböck and Pizka 2005)
have tried to search for synonyms without considering the POS from WordNet. However,

20Decision of this threshold is carried out in the preliminary study.

578 Empir Software Eng (2016) 21:565–604

those are not successfuFl since their results include too many unreliable and irrelevant syn-
onyms. On the other hand, our approach uses a word and its POS together to search for
more reliable and relevant synonyms, improving the accuracy of inconsistency detection.

3.2.3 Detecting Syntactic Inconsistency

Syntactically inconsistent identifiers have similar letter sequences, as defined in Definition
7. These identifiers often cause confusion when trying to understand the source code of
a program. In addition, they can lead to incorrect refactorings since some refactorings are
sensitive to spelling.

To detect syntactically similar identifiers, our approach first identifies the syntactically
similar words. The syntactical similarity is dependent on the edit distance of two words.
The approach leverages the Levenshtein Distance Algorithm (Levenshtein 1966) used to
compute DIST (w1, w2) in Definition 7. This algorithm measures the distance between two
words by counting the alphabetic differences and dividing them with the number of letters.
For example, the distance between kitten and sitting is three (kitten → sit ten → sit tin →
sit ting).

This approach used the distance to compute a determinant value, C(w1, w2) in Defini-
tion 7. If the value is larger than the threshold T (SYN), the two words are considered to
be syntactically similar. For the above example where T (SYN) = 4, C(kitten, sit ting) =

7
(|6−7|+1)·3 = 1.17. Thus, kitten and sitting are not syntactically similar. On the other
hand, credential and credental shown in Section 2.2 are syntactically similar since
C(credential, credental)) = 10

(|10−9|+1)·1 = 5. The threshold T (SYN) is computed in the
evaluation section.

Our approach takes an arbitrary pair of identifiers and determines whether the identifiers
have syntactic inconsistencies. Once the two identifiers include any pair of syntactically
similar words, they are syntactically inconsistent according to Definition 7. The approach
designates the identifier less frequently used in the target program as an inconsistent
identifier.

One exception is for noun words that have the same root word inWordNet (2014) because
these are often used on purpose. For example, ‘String accent’ and ‘String[] accents’ are
syntactically similar words. However, a developer can use a plural form on purpose for
this case. This exception can improve the accuracy of our approach since it can filter out
unnecessarily detected identifiers.

3.2.4 Detecting POS Inconsistency

There are two types of POS inconsistencies: Word and Phrase-POS inconsistencies. Word-
POS inconsistent identifiers have an identical word that is used with different POSes as
defined in Definition 8. For phrase-POS inconsistency, our approach detects the identifiers
that violate the grammatical rules of Java naming conventions according to Definition 10.

In particular, for word inconsistency, only less frequent POSes are regarded to be
inconsistent. The identifiers that contain the dominant POS words are not detected as incon-
sistencies. For example, when 90 % of the instances of abort use it as a verb, the remaining
cases are the inconsistent ones.

Phrase-POS inconsistent identifiers are detected by comparing the POS of an identifier
to the grammatical rules of the Java naming conventions. Figure 4 shows an algorithm that
can be used to detect phrase-POS inconsistent identifiers. There are two cases where the
number of words consisting of an identifier should be considered. If the target identifier is a

Empir Software Eng (2016) 21:565–604 579

POSs = getPOS(word) PPOS = getPhrasePOS(phrase)

Identifier is
a single word?

Class?

[Yes]

POSs

contains
noun ?[No]

Method?

[Yes]

[Yes]POS
Inconsistent Term POSs

contains

verb?

[No]

[Yes]

[Yes]

[No]

Class? PPOS = NP or SINV?

[No]

Method?

[Yes]

[Yes] POS
Inconsistent Term

PPOS = VP?

[No]

[Yes]

[Yes]
[No]

[No]

(1) (2)

[No] [No]

Fig. 4 POS-inconsistent identifiers detection

single word (see the flow (1)), our approach checks if a specific POS exists in WordNet. For
example, if a single word is used as a class identifier and the word can be a noun according
to WordNet, then it is considered to ba a valid identifier. If not, the approach detects the
identifier as inconsistent.

Our proposed approach first parses composite identifiers by using an NLP parser to get
their phrase-POS (PPOS). Then, it detects inconsistency by comparing the PPOS to the
grammatical rules (see the flow (2)). For example, if the class identifier is not a noun phrase,
it violates naming conventions, which leads to a phrase-POS inconsistency.

3.2.5 Filtering and User Feedback

After detecting the three types of inconsistent identifiers, our approach filters out inconsis-
tent identifiers that contain domain words and idioms recorded in the Code Dictionary in
order to reduce false alarms. For domain words, our approach checks whether an identifier
has a domain word with the corresponding POS specified in the Code Dictionary.

A user of our method can provide feedback if any detection is incorrect. In case of seman-
tic or syntactic inconsistency, the user can suggest exceptions to the rules in order to accept
the detected inconsistency. For POS inconsistency, POS rules can be updated, or specific
identifiers can be ignored.

3.3 CodeAmigo: Tool Support

We developed an Eclipse based tool named CodeAmigo (Lee et al. 2012). It provides a
graphical interface for developers to be able to use our approach easily. The tool takes a
project and scans all of the source code files in the project in order to generate a report, as
shown in Fig. 5. This report lists all of the inconsistent identifiers that were detected by our
approach and describes the potential causes.

4 Evaluation

This section describes the results from an experiment that was designed to evaluate our
approach, as presented in Section 3. This experiment consists of a preliminary study and the

580 Empir Software Eng (2016) 21:565–604

Fig. 5 Snapshot of CodeAmigo

subsequent inconsistent identifier detection. The preliminary study was conducted to find
out appropriate threshold values for our approach. We then performed the second experi-
ment using these threshold values. This experiment uses our approach to detect inconsistent
identifiers.

We first collected seven popular software projects written in Java. Six of these were
open source projects and one was our tool support project CodeAmigo, as shown in Table 7.
Apache Lucene is an open source project that can be used to build a search engine. Apache
Ant, Apache JMeter and JUnit are support tools used to build Java-based applications. JHot-
Draw and Sweet Home 3D are GUI-based tools used to support graphic editing and virtual
furniture placement, respectively.

To check the validity of the inconsistent identifiers detected by our approach, we asked
16 developer and measured the precision and recalls (Frakes and Baeza-Yates 1992). In
addition, we conducted an interview for six of these participants in order to find out the
effectiveness of our approach. The remainder of this section shows the results for the incon-
sistent identifiers that were detected by our approach in Section 4.2 and further presents
quantitative and qualitative results obtained from the experiment in Section 4.3.

4.1 Preliminary Study: Deciding Threshold Values

To effectively build a Code Dictionary and detect inconsistent identifiers, appropriate
threshold values should be identified. Thus, we first conducted a sensitivity analysis for the
threshold values defined in Section 3.

4.1.1 Threshold Values for a Code Dictionary

We first examined two threshold values for T (WO) and T (PR), which are necessary
to identify domain words. As described in Section 3.1.2, these values are used in the

Empir Software Eng (2016) 21:565–604 581

W-Occurrence Filter and POS-Ratio Filter, respectively. To figure out appropriate thresh-
olds, we varied these two values as independent variables and applied the values to the
training set listed in Table 1. For T (WO), we used three different values: 80, 100, and 120
while T (PR) was varied by 0.8, 0.9, and 0.95. Then, we manually checked whether the
domain words are correctly identified for each combination of two thresholds. The results
are shown in Table 3. #Detection in Table 3 represents the number of detected domain words
after applying two filters shown in Fig. 2 with threshold values of T (WO) and T (PR).
Precision is the ratio of true positive domain words out of all detected words after manual
checking.

Since it is necessary to consider T (WO) and T (PR) together to find appropriate thresh-
olds of the W-Occurrence Filter and POS-Ratio Filter, we defined (1) as a selection factor.
This equation computes an incorporated value based on the number of detected domain
words and its precision. In this equation, min(∗) and max(∗) indicate that the minimum
and maximum values of #Detection and Precision columns in Table 3 (col[∗] is a set of
values in a specific column in Table 3). Using this equation, we selected T (WO) = 100
and T (PR) = 0.8, respectively, as their selection factor was the highest value (=31.9).

Selection.F = Precision − min(col[Precision])
max(col[Precision]) − min(col[Precision])

× #Detection − min(col[#Detection])
max(col[#Detection]) − min(col[#Detection]) (1)

We carried out another sensitivity analysis of threshold values for extracting idioms
described in Section 3.1.3. Similar to the above analysis, we examined several combi-
nations of T (FOf mw), T (FOcls), T (FOatt) and T (FOmet). Basically, every threshold
values must be larger than one because the a single identifier must be discovered at

Table 3 Sensitivity analysis results for different threshold values to detect domain word POS

T (WO) T (PR) #Detection Precision Selection F.

80 0.8 238 0.0

80 0.9 223 88.8 % 14.0

80 0.95 189 90.5 % 20.1

100 0.8 191 92.1 % 31.9

100 0.9 179 92.7 % 29.3

100 0.95 152 94.1 % 18.0

120 0.8 152 95.4 % 21.5

120 0.9 144 95.8 % 15.7

120 0.95 96.0 % 0.0

The first two columns show different values for T (WO) and T (PR) as independent variables. The next
three columns are the results (dependent variables) when applying each combination of two thresholds to
the training set listed in Table 1. #Detection is the number of detected domain words with respect to each
combination of T (WO) and T (PR) while Precision is the ratio of true positive domain words after manual
checking. The underlined numbers are the maximum values for each column while the wavy underlined are
the minimum values. After applying (1), T (WO) = 100 and T (PR) = 0.8 are selected as threshold values
for the main experiments described in Section 4.2

582 Empir Software Eng (2016) 21:565–604

Table 4 Sensitivity analysis results for different threshold values used to identify idioms

T (FOmet)

T (FOf mw) = 2 5 10 15

T (FOcls) = 2 Det. Pre. Det. Pre. Det. Pre.

T (FOatt) 2 130 87.7 % 88 93.2 % 61 96.7 %

3 122 86.9 % 80 92.5 % 53 96.2 %

4 120 86.7 % 78 92.3 % 51 96.1 %

least two times to decide if it is an idiom within the frameworks, classes, attributes, and
methods. We counted the number of idiom detections and computed their precision val-
ues by manually examining the correctness of the detections. The results are shown in
Table 4.

We observed that T (FOcls) does not affect to the results in the case of T (FOf mw) ≥ 2,
implying that any class identifiers do not have the same name throughout all of the frame-
works listed in Table 1. In addition, In case of T (FOf mw) ≥ 3, T (FOatt) cannot affect the
results. Thus, T (FOf mw) was set to 2 in order to have T (FOatt) affect the idiom detec-
tion. Higher values of T (FOmet) can increase the precision. The decrease in precision for
T (FOmet), in accordance with T (FOatt), is caused by filtering out the correct idioms due
to T (FOatt). This is attributed to the precision of the NLP parser. According to (1), we
obtained the following threshold values: T (FOf mw) = 2, T (FOcls) = 2, T (FOatt) = 3,
and T (FOmet) = 10.

4.1.2 Deciding Threshold Values for Inconsistent Identifier Detection

The threshold values used to detect inconsistent identifiers, which are described in
Section 3, include T (SEM) for deciding semantically similar words; T (SYN) for decid-
ing syntactically similar words; and T (DOM) for a base word. T (DOM) is intended for
use in determining the dominant word for searching non-dominant words used as inconsis-
tent identifiers. In order to find the appropriate threshold values, we preliminarily detected
the inconsistent identifiers within Apache Ant and Apache Lucene by controlling the thresh-
old values. We have obtained results as shown in Table 5, and the results for Apache
Lucene that are similar to that of Apache Ant are omitted. Based on (1), we decided that
T (SEM) and T (DOM) should be both 0.9. For T (SYN), we decided as T (SYN) = 3

Table 5 Sensitivity analysis
results for different threshold
values to detect semantic
inconsistency

Ant T (DOM)

0.8 0.9 0.95

T (SEM) Det. Pre. Det. Pre. Det. Pre.

0.8 514 70.2 % 223 79.1 % 124 73.8 %

0.9 401 67.7 % 161 83.9 % 84 79.3 %

0.95 378 75.8 % 113 83.3% 46 69.6 %

Empir Software Eng (2016) 21:565–604 583

because our approach may not effectively detect syntactically inconsistent identifiers when
T (SYN) >= 3.5, as shown in Table 6.

4.2 Inconsistent Identifiers Detected by Our Approach

Table 8 shows the result of the inconsistency detection by our approach, where POS-PHR,
POS-WORD, SEM and SYN represent phrase-POS, word-POS, semantic, and syntactic
inconsistent identifiers, respectively. Total indicates the total number of inconsistent iden-
tifiers of each project and type. Note that # of detected identifiers is the unique number
of identifiers detected as inconsistencies and one single identifier can have several dif-
ferent inconsistencies. The % of inconsistent identifiers is the ratio of the inconsistent
identifiers.

The phrase-POS inconsistency accounts for 71 % of the total number of inconsistent
identifiers while word-POS, semantic, and syntactic inconsistencies account for 12 %,
15.5 %, and 1.5 %, respectively. This implies that Phrase-POS is the most frequently
occurring inconsistency where identifiers violate the grammatical rules of Java naming
conventions. Inconsistent POS usage (POS-WORD) and synonyms (SEM) are frequent
inconsistency types as well, and syntactically inconsistent identifiers (SYN) accounts for
the least number of inconsistencies.

More inconsistent identifiers are detected for Ant, JUnit and JHotDraw than other sub-
jects. This is due to those subjects using more noun phrases instead of verb phrases for their
method identifiers (e.g., componentToRGB).

The Code Dictionary plays a role in filtering idioms and violations of the POS of domains
at the end of detection of the inconsistent identifiers. Such a process can eliminate false
alarms and can improve the precision of the detections. Figure 6 shows the intermediate
states of the detections for Ant, Lucene and JMeter. The idioms from the Code Dictio-
nary are used as an Idiom Filter in order to eliminate the detected inconsistent identifiers
when the identifier is discovered to be an idiom (see Table 14). For example, the method
identifier intValue() is detected as a POS-PHR inconsistency because the method identi-
fier should be composed of a verb or a verb phrase. However, since intValue() is an idiom,
it should not be detected as an inconsistent identifier. Thus, it is filtered out by the Idiom
Filter. After the Idiom Filter is run, the Domain Word POS Filter checks to see if the
words and their POS that caused a detection exist in the Domain Word POS, as shown
in Table 13. This filter has an effect that reduces the invalid NLP parsing. For exam-
ple, the word path in the method identifier mapPath() of the Ant project is parsed as a
verb. However, it is invalid parsing. Since the word path is stored in the Domain Word

Table 6 Sensitivity analysis
results for different threshold
values to detect syntactic
inconsistency

T (DOM)

0.8 0.9

T (SYN) Detection Precision Detection Precision

3 10 80.0 % 6 66.6 %

3.5 6 66.6 % 1 100 %

4 6 66.6 % 1 100 %

5 3 100 % 1 100 %

584 Empir Software Eng (2016) 21:565–604

Apache
Ant

Apache
Lucene

Before Code Dic. Filters

POS_PHR

POS_WORD
SEM

SYN

657
159

164

10

POS_PHR
POS_WORD

SEM

SYN

(-54)
(-16)

(-3)

(0)

D
om

ain
 W

ord
 P

O
S

 F
ilter

Sum 990 Sum (-73) 917

POS_PHR
POS_WORD

SEM

SYN

(-4) 599
(-35) 108

(-26) 135

(-4) 6

Sum (-69) 848

POS_PHR
POS_WORD

SEM

SYN

(0) 665
(-53) 83

(-25) 32

(-1) 10

Sum (-79) 790

POS_PHR
POS_WORD

SEM

SYN

(-59) 665
(-20) 136

(-4) 57

(0) 11

Sum (-83) 869

POS_PHR

POS_WORD
SEM

SYN

724
156

61

11

Sum 952

POS_PHR
POS_WORD

SEM

SYN

(-2) 528
(-55) 80

(-53) 180

(-4) 13

Sum (-114) 801

POS_PHR
POS_WORD

SEM

SYN

(-157) 530
(-22) 135

(0) 233

(0) 17

Sum (-179) 915

Apache
JMeter

POS_PHR

POS_WORD
SEM

SYN

687
157

233

17

Sum 1,094

Idiom
 F

ilter

D
om

ain W
ord P

O
S F

ilter

Code
Dic.

Code
Dic.

After Idiom Filter After Dom. W.POS Filter

603
143

161

10

Fig. 6 Filtering intermediate inconsistent identifiers by using the code dictionary

POS as a noun, the detection is invalid, and then it should be filtered out. In particu-
lar, the Domain Word POS filter is effective in reducing false alarms for the POS-WORD
and SEM.

The following present actual examples of inconsistent identifiers that were detected by
our approach. More details are available in our project web site.21

Phrase-POS Inconsistency:

• outStreams (method, Ant) - ‘outStreams’ is used as a FRAG, and is composed of
[(FRAG (ADVP (RB out)) (NP (NNP Streams)) (. .))]. The methods should be named
as a verb phrase.

• readerIndex (method, Lucene) - ‘readerIndex’ is used as an NP, and is composed
of [(NP (NP (NN reader)) (NP (NNP Index)) (. .))]. The methods should be named as a
verb phrase.

• Fail (class, JUnit) - ‘Fail’ should be used as a noun here. But its possible POSes
include [verb].

Word-POS Inconsistency:

• outStreams (method, Ant) - ‘out’ is generally used as a noun (120/123, 0.975), but here
it is used as an adverb (1/123, 0.008).

• CCMCreateTask (class, Ant) - ‘create’ is generally used as a verb (341/357, 0.955), but
here it is used as a noun (16/357, 0.044).

• DrawApplet (class, JHotDraw) - ‘draw’ is generally used as a verb (148/155, 0.954),
but here it is used as a noun (7/155, 0.045).

Semantic Inconsistency:

• Specification and spec (Ant) - ‘spec’ is semantically similar to specification (spec
is used 7 times, specification is used 37 times).

21https://sites.google.com/site/detectinginconsistency/

https://sites.google.com/site/detectinginconsistency/

Empir Software Eng (2016) 21:565–604 585

• Selector and Chooser (Sweet Home3D) - ‘selector’ is semantically similar to
chooser(selector is used 1 times, chooser is used 8 times).

• fetch and get (JMeter) - ‘fetch’ is semantically similar to get (fetch is used 2 times;
get is used 2224 times).

Syntactic Inconsistency:

• startsWith() (method, JMeter) - ‘starts’ is syntactically similar to start(starts is
used 1 times; start is used 45 times)”.

• getPreserve0Permissions() (method, Ant) - ‘preserve0’ is sytactically
similar to preserve (preserve0 is used 1 times; preserve is used 14 times).

4.3 Analysis of Inconsistency Detection

To validate our approach, we establish four research questions (RQs) as follows:

1. RQ1: How precise are the inconsistencies detected by our approach?
2. RQ2: How comprehensive are the detection results?
3. RQ3: How much does Code Dictionary contribute to reduce false positives?
4. RQ4: How useful are the detection results for developers?

The followings describe the experiment setting and the analysis of the results.

4.3.1 RQ1: How Precise are the Inconsistencies Detected by Our Approach?

Although our approach attempted to thoroughly detect identifier inconsistencies, as
described in Section 3, the detection results can be subjective since different developers may
have a different sense of inconsistency. This subjectivity is a common issue in NLP-related
work (Klein and Manning 2003). In addition, the parser (The Stanford Parser: A statistical
parser 2014) used in our approach is intended to parse natural language instead of source
code identifiers, even though the parser has a high precision.22 Hence, it is necessary to
evaluate the results of the detection with human subjects.

To answer RQ1, we gathered 16 volunteer practitioners with 3 to 15 years of development
experience as human subjects for our experiment. They are currently mainly develop-
ing Java-based software systems such as package solutions and enterprise applications, as
shown in Table 9. We developed a web-based system (Code Amigo Validation WebPage
2014) that presents all our detection results for the seven projects, and stores all subjects’
validation results to facilitate this experiment. This system provides the name, type, and rea-
son of each inconsistent identifier. We had a three-hour workshop to distribute CodeAmigo
with the seven projects, introduce each project and their major features, and explain the
web-based system for evaluation. Then, we asked the subjects whether the detection results
by our approach were correct or not. During the workshop, the subjects validated inconsis-
tent identifiers and checked the actual source code where the inconsistent identifiers were
used. After the workshop, we requested the subjects to complete the evaluation within a
week. During the one-week evaluation, all subjects could access the source code of each
of the detection results whenever they wanted to see the contextual information such as the
parameters of the method identifiers and type information for the field identifiers.

22The Stanford Parser: A statistical parser (2014) has 86 % parsing precision for a sentence consisting of 40
English words.

586 Empir Software Eng (2016) 21:565–604

In order to evaluate the validity of our approach, we applied a traditional precision and
recall measure (Frakes and Baeza-Yates 1992) instead of measures such as the area-under-
ROC curve (Powers 2011) with the following reasons. First, it is almost impossible to
manually find true-negative identifiers for the 7 projects’ source code. Second, we have
defined the thresholds in the preliminary study, and changing the thresholds means that all
manual evaluation processes should be conducted from the start to obtain a new confusion
matrix. Third, we considered that the precision and recall measure is sufficient to explain
the efficiency of our approach, since true-negative detections are not considered for the
precision measure.

The results obtained from the human subjects were used to measure the precision
of the detection results of our approach according to the following equation Frakes and
Baeza-Yates 1992:

Precision = |(Hid ∩ Did)|
|Did | (2)

where Did is the set of inconsistent identifiers detected through our approach and Hid is
the set of identifiers marked as a correct detection by the human subjects. Note that (Hid ∩
Did) = Hid since Hid is a proper subset of Did .

Figure 7 shows the precision results for the projects. The average precision for the seven
projects is of 85.4 % with a minimum precision of 68.4 % for “Sweet Home3D” and a max-
imum precision of 94.4 % for “Lucene”. This implies that at least 8 out of the 10 identifiers
are actually inconsistent once they are detected by our approach.

Among the subjects, Lucene showed the highest precision. This is supposedly possible
since it has many identifiers composed of natural words (e.g., documents and parse), and
even the technical terms in the project are quite similar to those of natural language. This
could increase the precision of the NLP parsing.

On the other hand, Sweet Home3D showed the lowest precision. One of the main reasons
for its low precision is that the NLP parser did not correctly tag the POS of the most common
words, such as furniture, plan, and piece, in the project.

JUnit JHotDraw S.Home3D Lucene JMeter Ant CodeAmigo Average

Precision 91.7% 87.6% 68.4% 94.4% 84.9% 83.3% 76.2% 85.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Fig. 7 Precision result for each project shown in Table 7. These results are calculated by (2)

Empir Software Eng (2016) 21:565–604 587

In addition, JHotDraw, JMeter and Ant were less precise compared to Lucene because
they include diverse terms for GUI specific words such as Panel and Frame, which can often
result in incorrect POS tagging.

When it comes to inspecting the results of each inconsistency type, the phrase POS
inconsistency (POS-PHR) has the highest precision (87.9 %), as shown in Fig. 8. This indi-
cates that our approach can detect naming rule violations with precision. On the other hand,
semantic inconsistencies (SEM) have the lowest precision at 76.5 %. This low precision
indicates that the human subjects often regarded for the words that were detected seman-
tically similar were not exactly the same. However, this is still positive since it implies
that approximately 7 out of 10 semantically inconsistent identifiers detected through our
approach were correct.

Additionally, we examined the correlation between development experience and preci-
sion. By using linear regression, we computed correlation of all 16 developers with respect
to the precision value of each developer. As a result, the correlation value was -0.419.
However, this is not conclusive since R2 was 0.175. Therefore, there was no significant
correlation between them.

4.3.2 RQ2: How Complete are Our Detections?

In addition to the precision, it is important to find out whether our approach can completely
detected inconsistent identifiers in a program with few number of missing inconsistencies
(i.e., recall Frakes and Baeza-Yates (1992)). Note that the entire set of inconsistent identi-
fiers is necessary in order to compute a recall value. However, it is difficult to find every
inconsistent identifier in the project by employing human developers. Thus, we observed to
what extent our approach could detect inconsistent identifiers that were missed by human
subjects instead of computing the traditional recall value.

We conducted two experiments where the subjects 1) manually detected the inconsistent
identifiers from scratch and 2) where they manually detected them with the assistance of
our tool. Six subjects participated in this set of experiments, and they had 10–15 years
of experience in Java development. We ran a small workshop to introduce them to our

POS-PHR POS-WORD SEM SYN Precision

Precision 87.9% 82.8% 76.5% 81.5% 85.4%

70.0%

72.0%

74.0%

76.0%

78.0%

80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

Fig. 8 Precision of each inconsistency types

588 Empir Software Eng (2016) 21:565–604

Table 7 The subjects used in the evaluation. CLS, MET, and ATTR represent the number of class, method,
and attribute identifiers, respectively

Subject Version SLOC CLS MET ATTR All

Apache Lucene (2013) 3.0.3 104,287 1,279 10,218 5,526 17,023

Apache Ant (2013) 3.0.3 45,835 659 4,550 2,288 7,497

Apache JMeter (2013) 2.9 90,714 1,104 8,710 5,346 15,160

JUnit (2013) 4.0 6,588 186 986 205 1,337

JHotDraw (2013) 7.0.6 32,179 405 3,620 894 4,919

Sweet Home (2013) 4.10 82,439 618 4,933 3,485 9,036

CodeAmigo 1.0 6,191 46 348 160 554

Total 368,233 4,297 33,365 17,904 55,526

experiment, and we distributed work-sheets containing all of the identifiers and their types
(e.g., class or method), all words, and all identifiers that include each word. The reason
for which we provided additional materials for the experiment is that manually collecting
all cases of word usages throughout the project is tedious and time-consuming work. In
addition, we provided Eclipse with the seven projects without showing CodeAmigo. The
experiment was conducted for three hours, and after the experiment, we carried out a semi-
structured interview. We selected the JUnit as an experiment project because the number
of its identifiers is relatively small compared to other projects listed in Table 7. The JUnit
project contains the 941 identifiers and the 665 unique words consisting of the identifiers.

For the first experiment, we showed the source code of JUnit and designated all iden-
tifiers in the code by highlighting their type (e.g., class, method, and attribute). The
participants examined the identifiers and marked whether or not they were inconsistent.
The objective of this experiment was to figure out how many inconsistent identifiers the
participants could detect manually. This may reflect how effectively developers can detect
inconsistency during real development.

The second experiment was conducted to observe how well our approach could enhance
inconsistency in the detection. We provided the detection results of our approach after the
first experiment. Then, we asked the participants to check the validity of their detection
results in the first experiment and of any missing identifier as well.

Equation 3 shows how we computed the recall of our approach. Did is the set of
identifiers that were detected by our approach, and Mid is the set of identifiers that are

123

123

79.25 143.25

103.25 167.25

D

D

M

M

Recall

55.80%

62.14%

Precision

64.43%

83.94%

Manual

Manual +
Our Approach

DetectionsF-Measure

59.80%

71.14%

Improvement 24(30%) 24(16.7%)6.34% 19.51% 11.34%

Fig. 9 Recall and F-Measure for pure manual detection and manual detection supported by our approach

Empir Software Eng (2016) 21:565–604 589

Table 8 The number of inconsistent identifiers detected by our approach

Subject
POS- POS-

SEM SYN
of detected # of detected % of inconsistent

PHR WORD inconsistencies identifiers identifiers

Lucene 665 83 32 10 790 358 2.10 %

Ant 599 108 135 6 848 483 6.44 %

JMeter 528 80 180 13 801 379 2.50 %

JUnit 148 6 35 0 189 123 9.20 %

JHotDraw 509 62 130 25 726 323 6.57 %

S.Home3D 238 118 77 5 438 256 2.83 %

CodeAmigo 30 1 3 0 34 30 5.42 %

Total 2,717 461 592 59 3,826 1,952 3.52 %

% 71.0 % 12.0 % 15.5 % 1.5 % 100 %

manually detected by the participants in the above experiments. In addition, we computed
the F-measure by using (4).

Recall = |(Did ∩ Mid)|
|Mid | (3)

F-measure = 2 · Precision · Recall

P recision + Recall
(4)

Figure 9 shows the results of the above mentioned experiment. For this figure, we com-
puted the average of each measure for every individual participant. In the case of the purely
manual detection, the recall, precision, and the F-measure values were 55.80 %, 64.43 %,
and 59.80%, respectively. Note that our approach detected 123 inconsistent identifiers (Did)
as shown in Table 8. The participants detected 143.25 inconsistent identifiers (Mid) and
|(Did ∩ Mid)| was 79.25 on average (Table 9).

After providing the detection result of our approach, we observed how the participants
changed their detection results. As a result, they added more inconsistent identifiers when
they accepted detection results of our approach, which is shown in the second row of Fig. 9.
They detected 24 (16.7 %) additional inconsistent identifiers on average, which leads to a
30 % increment in |(Did ∩Mid)|. Based on this result, we observed an improvement for each
measure; 6.34 % for recall, 19.51 % for precision, and 11.34 % for F-measure, respectively.

We conducted an additional analysis to simulate a real development environment since
inconsistency can be subjective for each of the human subjects. Developers normally have a
formal/informal meeting to discuss the validity of their detections. Thus, we further inves-
tigated their detections with respect to two cases. First, if we assumed that all detections for
every participant were correct, then they detected 233, as shown in Fig. 10 (Union), and the

Table 9 Work experience and
expertise of human subjects Work Experiences Expertise

1 – 5 years 6 package solutions 6

5 – 10 years 3 enterprise applications 3

11 – 15 years 7 mobile applications 5

middlewares 2

Total 16

590 Empir Software Eng (2016) 21:565–604

123

123

82 103

112 233

D

D

M

M

Recall

79.61%

48.07%

Precision

66.67%

91.06%

Manual
(Intersection)

Manual
(Union)

DetectionsF-Measure

72.57%

62.92%

Manual
(Intersection) +
Our Approach

123 107 128D M83.59% 86.99% 85.26%

Manual (Union)
+ Our Approach 123 112 233D M48.07% 91.06% 62.92%

Fig. 10 Recall and F-Measure for intersection/union set of manual detection

results were 48.07 % for recall and 91.06 % for precision. In this case, our approach could
not improve their detections.

On the other hand, if we assumed that the correct detections are just those where all par-
ticipants commonly agreed, then the recall and precision of our approach were 79.61 % and
66.67 %, respectively, as shown in Fig. 10 (Intersection). In addition, the values improved
to 83.59 % for recall and 86.55 % for precision when our approach helped them during the
tasks. Note that our approach could give advices on 25 more inconsistent identifiers (from
82 to 107).

4.3.3 RQ3: How Much does Code Dictionary Contribute to Reduce False Positives?

To answer this RQ, we compared inconsistent identifiers detected by our approach
with/without Code Dictionary. Note that the detection results with Code Dictionary is a
subset of detection results without Code Dictionary since it may filter out false positives.
Figure 11 shows the results; Code Dictionary reduced 43.7 % of potential false positives on
average.

The considerable number of inappropriate NLP parsing was filtered out by Code Dictio-
nary containing the POS of domain words, idioms, and mapping between abbreviations and

1276

1720

1406

227

1625

769

83

790 848 801

189

726

438

34
0

200

400

600

800

1000

1200

1400

1600

1800

2000 without CodeDic

with CodeDic

-38.1%
-50.7%

-43.0%

-16.7%

-55.3%

-43.0%

-59.0%

Fig. 11 Code Dictionary’s contribution for reducing false positives

Empir Software Eng (2016) 21:565–604 591

its original words. First, the POS of domain words could filter out diverse parsing errors in
analyzing identifiers. The representative samples are summarized as below:

• header (method identifier in Ant) is parsed as ‘(S (VP (VB header)) (. .))’, which is a
wrong parsing result. However, it is filtered out because the word header is stored as a
noun in Code Dictionary (see Appendix A).

• setupPage (method identifier in Sweet Home3D) is parsed as ‘(S (NP (NN setup)) (VP
(VBZ Page)) (. .))’. The word page is stored as a noun, so that the identifier has been
filtered out.

• toImage (method identifier in JHotDraw) is parsed as ‘(S (VP (TO to)(VP (VB
Image)))(. .))’. The word Image is incorrectly parsed. However, our approach could
filter out the identifier by using Code Dictionary that classifies the word Image as a
noun.

• offset (attribute identifier in JMeter) is parsed as ‘(S (VP (VB offset)))’. Code
Dictionary records the word offset as a noun.

• fileSize (method identifier in Ant) is parsed as ‘(S (VP (VB file)(NP (NN Size)))(. .))’.
Code Dictionary classifies the word file as a noun in the storage.

Second, the idioms of Code Dictionary could filter out diverse false positives as below:

• actionPerformed (method identifier in JHotDraw and JMeter) is parsed as ‘(S (NP (NN
action)) (VP (VBD Performed))(. .))’. However, the identifier is being commonly used
in source code written in Java regardless of the right or wrong NLP parsing. Thus, it is
filtered out by Code Dictionary (see Appendix A).

• available (method identifier in Ant and JHotDraw) is parsed as ‘(FRAG (ADJP (JJ
available))(. .))’. The word available is also incorrectly parsed by the NLP parser, so
that it could have been detected as an inconsistent identifier by codeAmigo without
Code Dictionary support. Code Dictionary could filter out the identifier because it is
recorded as an idiom.

• indexOf (method identifier in JHotDraw) is filtered out because it is an idiom.

Third, Code Dictionary also maintains mapping between a word and its abbreviation. In
some cases, replacing an abbreviation into its original word has an influence on appropriate
NLP parsing. The representative cases are presented as below:

• initSegmentName (method identifier in Lucene) is parsed as ‘(S (NP (NNP init)(NNP
Segment)) (VP (VB Name))(. .))’. The NLP parser analyzed init as a noun when init
was not recovered into the original word initialize. After recovering it into the origi-
nal, the identifier is parsed as ‘(S (VP (VB initialize (S (NP (NNP Segment)(VB (VB
Name)))(. .)))))’. Although all words were not correctly parsed, the word initialize has
been correctly parsed after recovering it.

• specFile (attribute identifier in Ant) is parsed as ‘(NP (JJ spec) (NNP File))’. After
replacing the word spec into specification, the NLP parser correctly analyzed it as ‘(NP
(NNP specification) (NNP File))’.

In addition to this, the mapping information in Code Dictionary could recover diverse
identifiers such as initLookAndFeel (method identifier in Sweet Home3D), dirListing
(attribute identifier in Ant), closeDir (method identifier in Lucene), and checkJarSpec
(method identifier in Ant).

As a result, Code Dictionary could bridge the gap between source code analysis and
natural language analysis by using domain words POS, idioms, and abbreviations generally

592 Empir Software Eng (2016) 21:565–604

used in writing source code. Thus, it can help inconsistency detection by reducing diverse
false positives caused by NLP parsing errors.

4.3.4 RQ4: How Frequently do Developers Discover Inconsistent Identifiers and How
Useful are Our Detections?

We performed a semi-structured interview with questionnaires for all participants to further
elaborate our findings from Section 4.3.2. This interview investigated the necessity for this
approach and asked several that were prepared questions as follows:

Questions on the Necessity of the Detection of Inconsistent Identifiers

• How often do you encounter an inconsistency of identifiers?: Most of the participants
stated that they often see inconsistent identifiers in their source code as shown in
Fig. 12a. Also, they emphasized that these are more frequently discovered as the scale
of the project becomes larger. The extent of the discovery is different depending on
the role of the projects. When they have any responsibility to assure the quality of the
source code, they more frequently discovered inconsistent identifiers.

• What do you do when you see inconsistent identifiers?: Most of the subjects did not cor-
rect the identifiers if they were not in charge of the source code (see Fig. 12b). Even if
they are the authors of the source code, they did not change it unless they were in charge
of maintenance of the source code. If the code belongs to others, they do not modify it
because they do not want to make controversial issues that could result from the mod-
ification. Eventually, the responsibility for understanding and maintaining inconsistent
identifiers is delegated to software maintainers. This implies that it can be difficult to
correct inconsistencies once they have happened since software maintainers have most
of the responsibility to change identifiers and these often cannot be corrected if the

0

1

2

3

4

5

6

7

8

Very Often Often Sometimes Rarely Never

(a) Perception of Inconsistency

0

2

4

6

8

10

12

Don't do
anything

Always
modify

Modify If it's
mine

Etc.

(b) Treatment of Inconsistency

0

2

4

6

8

10

very useful useful So-So Useless I don't
know

(c) Usefulness of Our Approach

0

1

2

3

4

5

6

7

8

9

Implementation Verification Maintenance

(d) Support for Software Lifecycle

Fig. 12 Analysis of the semi-structured interview

Empir Software Eng (2016) 21:565–604 593

maintainers miss the inconsistent identifiers. The Etc. section in the figure includes
‘sometimes modify the inconsistent identifiers regardless ownership’.

• Why do you think such inconsistency happens?: All participants agreed that incon-
sistency occurs as a result of human factors. Expressions for concepts that can vary
depending on time, background knowledge, and so on. These can be different, even
for a single person, depending on the time, meaning that inconsistency is inevitable.
Although they maintain a glossary in the project, it is not observed as well. Some of
the organizations build term management systems, also known as meta-data manage-
ment system. However, all words cannot be maintained in the system and developers
also feel inconvenient because they should register a term whenever they want to write
a new term in the source code.

Questions on the Usefulness of our Approach

• How useful is our approach for detecting inconsistent identifiers?: The participants
stated that our approach is useful, as shown in Fig. 12c and the results are acceptable.
In addition, regardless of post-action after detecting inconsistent identifiers, they said
that inspecting the inconsistency of identifiers was valuable in order to check the cur-
rent quality of the entire source code. Although they did not think that inconsistent
identifiers are not a severe issue when seeing the list of them at the first time, statistical
information and reasons for each inconsistency from our approach made them real-
ize it as a severe issue. Also, their feedback says that our tool CodeAmigo integrated
with Eclipse provides good accessibility for software developers who spend their time
writing source code.

• When is our approach useful during the software life cycle?: They said that it is particu-
larly useful during inspection, peer review of the source code, and code auditing during
implementation (see Fig. 12d). Since our approach provides statistical usage results for
all words in the source code, it enables the reviewer to judge the right choice of words.
Although the subjects did not want to correct programs that belong to other develop-
ers, they stated that they will try to correct inconsistent identifiers detected using our
approach during the review and auditing phases. Consequently, we could understand
that our tool is more applicable to the review and code auditing phase in the software
life cycle.

• Have you ever used the tool checking inconsistent identifiers?: Most of the subjects
had not used such a tool that could check for inconsistent identifiers. Some of them
had used CheckStyle (2013) to check whether their source code adhered to a set of
coding standards, or FindBug (2013) to inspect the source code for potential defects. In
addition, in-house term management systems that they built could manage terms used
in the source code while only managing domain-specific words in their application
domains without managing various terms of the general computer domain. They feel
that registering new words was too cumbersome when writing source code. Thus, they
stated that our approach is suitable for the purpose of detecting inconsistent identifiers
that they had never used before.

After interviewing the practitioners with the prepared questions, we freely discussed
recurring issues related to inconsistency in the source code and to possible solutions for
such issues. The following give a summary of our free discussion:

• Relationships between Understandability and Inconsistency: Understandability indi-
cates how well readers can understand the source code and the intention of an identifier
written by the original authors. Inconsistency is one of the causes that prevents

594 Empir Software Eng (2016) 21:565–604

understandability. Thus, it is important to remove inconsistent identifiers even though it
is not the only essential activity that can improve understandability. They insisted that
it must be integrated with checking for the code conventions.

• Other types of Inconsistencies: They did not suggest any new type of inconsistency for
the identifiers. Instead, they proposed inconsistency in the code section management.
For example, a developer writes a class with attributes in the upper part of a class while
another developer places the attributes at the bottom of the class. Improving this in line
with improving understandability of the source code. In addition, they suggested there
could be critical inconsistency between the design model or the design documents and
the source code. These might be important research issues.

4.4 Threats to Validity

Construct Validity The identifier inconsistency may not have a strong correlation to soft-
ware maintenance since there are many other aspects that influence software maintainability.
To justify this issue, we collected and summarized several real examples from several issue
tracking systems for open-source projects throughout Sections 1 and 2. These examples can
show that identifier inconsistency may affect software maintenance

Contextual information can alleviate inconsistency issues. For example, differenti-
ating the full signature of the methods “retrieveUserId(String database)
and searchUserID(String query)” can be easier than for a simplified signature
“retrieveUserId() and searchUserID()”. However, the contextual information
may not be helpful in some cases, as shown in Issue HBASE-58423: filter(Text
rowKey), filter(Text rowKey, Text colKey, byte[] data), and
filterNotNull (SortedMap<Text, byte[]> columns). Evaluating the
impact of the contextual information with inconsistency detection remains as a future task.

Content Validity Four types of identifier inconsistencies defined in Section 2.2 might not
completely identify all areas of inconsistency. There can be several different type of incon-
sistencies. For example, we can define “behavior inconsistency” as that which indicates
that the method or class names may be inconsistent with the behavior of the corresponding
method or class.

Internal Validity Different developers might identify inconsistent identifiers differently
due to their different understanding of programs. To manage such cases, we analyzed the
detection results from several developers through intersection and union sets as shown in
Section 4.3.2. In addition, different threshold values for our approach might show differ-
ent detection results. To alleviate this problem, we have conducted a sensitivity analysis
to define the threshold values through a preliminary study using Apache Ant, as shown in
Section 4.1.

When the participants verified the detection results on our web-site, we asked them to
uncheck a box if our detection was not valid. We supposed that there were more valid
detections than invalid ones, and such a design is intended to facilitate faster validation due
to the massive amount of manual checking (3,826 detections). The participants agreed with
our experimental method for the same reason. Although this method (“checked” by default)
might be biased, the opposite method (“unchecked” by default) can be biased as well.

23https://issues.apache.org/jira/browse/HBASE-584

https://issues.apache.org/jira/browse/HBASE-584

Empir Software Eng (2016) 21:565–604 595

External Validity Our approach may show different results depending on our subjects or
for closed-source projects. Such programs may have significantly different naming conven-
tions. For example, those programs can frequently use domain-specific words that can be
detected as inconsistencies through our approach. In addition, different developers may have
different criteria to identify inconsistencies. Thus, the result of our study shown in Section 4
can be different if different subjects participated in the study.

5 Related Work

This section presents prior work that targeted the detection of inconsistent identifiers in
source code from two different perspectives. We first introduce existing concepts that handle
inconsistent identifiers with respect to Semantic, Syntactic and POS inconsistencies. Then,
technical comparisons between the previous approaches and ours are presented in turn. In
the last section, we compare detections from the previous tool and CodeAmigo.

5.1 Inconsistency of Source Code Identifiers

Several previous studies handle inconsistencies of source code identifiers. Deiβenböck and
Pizka (2005) formally defined the inconsistency of source code identifiers. They divided
inconsistencies into homonyms where an identifier is mapped to two concepts, and synonyms
where more than two identifiers are mapped to a single concept. For example, the File
identifier can be mapped into the two concepts FileName and FileHandle so that it
can defined as a homonym. On the other hand, account number and number indicate
an account number together, which is a synonym. Their synonym is conceptually the same
with our semantic inconsistency. However, we added POS-constraints into the inconsistency
to improve the preciseness when searching for appropriate synonyms, which was motivated
by the use of general natural language dictionaries, such as Oxford24 and Collins Cobuild.25

In addition, the word-POS inconsistency is in line with the concept of a
homonym (Deiβenböck and Pizka 2005). This is because different POSes for a word indi-
cate different concepts (meanings). These are limited to a word discovered in the natural
language dictionary. Such a definition is inspired by Caprile and Tonella (1999), developers
tend to consistently use a single POS of a word throughout a project even though the word
has diverse POSes.

Deiβenböck and Pizka (2005), and Lawrie et al. (2006) defined the term inconsistency
as a mapping of a single term to more than two concepts. However, the different POSes of
a word indicate different concepts (meaning or senses). For example, the word sleep as a
noun generally indicates the state while it often represents a execution behavior as a verb.
Thus, we defined a word-POS inconsistency. Note that word-POS inconsistency is limited
to words in the natural language dictionary.

Abebe et al. introduced an Odd Grammatical Structure as one of the lexicon bad
smells (Abebe et al. 2008). They checked if a specific POS existed in a class, method or
attribute identifiers to detect a lexicon bad smell. For example, Compute as a class iden-
tifier is a lexicon bad smell because the class identifier contains a verb without any nouns.

24Oxford Dictionary, http://www.oxforddictionaries.com/
25Collins Cobuild Dictionary:http://www.collinsdictionary.com/dictionary/english

http://www.oxforddictionaries.com/
http://www.collinsdictionary.com/dictionary/english

596 Empir Software Eng (2016) 21:565–604

However, their missing parts in defining the grammatical rules of the identifiers when nam-
ing identifiers is that ‘class names are generally a noun as well as a noun phrase’(see Bloch
(2001)). This indicates that checking if the entire identifier observes the phrase-POS rule is
also valuable for developers because many identifiers are composed of more than two words.
A phrase-POS inconsistency of our approach is similar to Abebe et al.’s odd grammatical
structure (Abebe et al. 2008), but it focuses more on the grammatical constraints of the
entire identifier.

Hughes stressed the importance of spell checking in source code (Hughes 2004). Eclipse,
as the one of the most popular editing tools, also embeds a Spell Checker feature as a
default, and it contains a language dictionary for support. The dictionary can be changed
into others, such as SCOWL,26 as a custom word dictionary for the spell checker. Such
spell checkers however do not work when two misspelled words are discovered in the dic-
tionary (e.g., states and status). Since the syntactic inconsistency presented in the
paper handles similar character sequences of two words, it can detect structural-inconsistent
identifiers, including misspelled-words regardless of the existence in the dictionary. It also
detects words that might be confused due to their similar letter sequences.

5.2 Detecting Inconsistent Identifiers

In order to handle inconsistent identifiers, diverse guidelines have been introduced by indus-
try and academia. In industry, Sun Microsystems (acquired by Oracle) suggested naming
conventions to guide identifier naming by using grammatical rules (Code Conventions
for the Java Programming Language: Why Have Code Conventions 1999). Also, various
industrial practitioners have placed an emphasis on careful naming of the source code ele-
ments (Martin 2008; Bolch 2008; Goodliffe 2006). Most of them stated that identifiers in a
program should be used in a consistent manner.

In academia, Lawrie et al. (2007) tried to analyze the trends for code identifiers by
establishing a model for measuring the quality of the identifiers, and then mining 186 pro-
grams over three decades. Their statistical findings indicate that 1) modern programs contain
higher quality identifiers, 2) the quality of open and proprietary source identifiers is differ-
ent, and 3) a programming language does not largely affect the quality of the identifiers.
Additionally, they mentioned that Java uses relatively high quality identifiers, compared
to other programming languages, thanks to an early encouragement of coding and naming
conventions.

Deiβenböck and Pizka (2005) formally defined the inconsistencies of source code iden-
tifiers, as mentioned above. While it is valuable to introduce this issue at first, it has
shortcomings in that developers should manually map the identifiers to the concepts. In
order to handle the shortcoming of Deiβenböck and Pizka’s approach, Lawrie et al. (2006)
used the patterns of a letter sequence of identifiers and WordNet (2014). They figured out
that an identifier exists in the other identifiers, which is a way of detecting a homonym. For
example, the identifier FileName and FileHandle have File as a part of the identi-
fiers. In addition, they automatically searched synonyms inWordNet. Although they applied
WordNet to find semantically similar words, they did not analyze the POS of each word that
composed an identifier. This makes the scope of the synonyms very diverse, which must
decrease the precision when detecting synonyms.

26SCOWL: http://wordlist.aspell.net/

http://wordlist.aspell.net/

Empir Software Eng (2016) 21:565–604 597

Abebe et al. (2008) proposed Lexicon Bad Smell indicating inappropriate identifiers in
terms of the lexicon, and they presented a tool support LBSDetector in order to automatically
detect improper identifiers. Among the lexicon bad smells, the Odd grammatical structure
smell is similar to the Phrase-POS inconsistency, which indicates issues, such as when class
identifiers do not contain a noun, attributes that contain verbs, and methods that do not start
with a verb. However, such a method can cause false alarms. For example, length() and
size(), as method identifiers, and debug and warn, as attribute identifiers, are detected
as odd grammatical structure bad smell. In our approach, we have followed the Java naming
convention without defining new grammatical rules, as introduced in Section 2. Also, we
built a Code Dictionary that stores idiom identifiers, such as length() and size(),
which commonly violate Java naming conventions but are acceptable.

Abebe and Tonella (2010) and Falleri et al. (2010) built an ontology containing concepts
and their relationships by using source code identifiers. They first separated the words from
the identifiers, composed a sentence according to their rules, parsed the sentence with a nat-
ural language parser, and defined them as knowledge. Using such knowledge, the developer
names the identifier. This approach is similar to our approach in terms of using an NLP
parser, but they are not intended to detect inconsistent identifiers.

Abebe and Tonella (2013) then introduced an automated approach that exploits ontolog-
ical concepts and relations extracted from the source code in order to suggest identifiers
on the fly. The purpose of their approach is to help developers name identifiers by auto-
matically suggesting related concepts such as auto-completion. While this approach may
be helpful when developing the system, it can be hardly used by software maintainers or
reviewers for verification because it is not intended to support scanning all identifiers and
detecting an inconsistent use of the terms and their relations throughout the project. Their
tool has not been developed, yet it is described in the paper, which is not available to use.

Some researchers have tried to extract vocabulary from the source code (Delorey et al.
2009; Lawire et al. 2010). Lawire et al. (2010) suggested an approach to normalizing vocab-
ulary from source code in order to mitigate an expression gap between software artifacts
written in a natural language and source code written in a programming language. They sep-
arated an identifier into several possible soft-words and computed the similarity between
the soft-words and the natural language words in external dictionaries based on the wild-
card expansion algorithm (Lawrie et al. 2007). This is valuable to map diverse acronyms
and abbreviations in the source code into concepts that natural language can apply for
Information Retrieval techniques (Frakes and Baeza-Yates 1992) when mining source code.

Delorey et al. (2009) also proposed an approach that builds a corpus from source code
by defining four levels to denote identical words. They classified the words according to the
same letter sequence as POS, and analyzed the frequency of the occurrence of the word in
the JDK 1.5 source code. Their concept for ‘word’ and POS are mapped into an identifier
and a type of an identifier (e.g., class, method or field) respectively. It has a limitation in
handling a word as a constituent of an identifier.

For method identifiers, Host and Ostvold (2009) investigated verb usage in the source
code and built a pattern for a verb starting with the verb (e.g., contains-*). The pat-
tern can include ‘returns int/string’, ‘create string/custom objects’, ‘throws exceptions’, etc.
They extracted it from the source code and defined it as a pattern of a specific verb of a
method, and then they indicate a violation of the pattern as a naming bug. While it may con-
tribute to consistent use of a verb of a method throughout Java based applications, it is not
applicable for detection of inconsistent identifiers in a single project. Also, it only focuses
on the method identifiers without considering other source code elements.

598 Empir Software Eng (2016) 21:565–604

Table 10 Comparison with previous work (++:well-supported, +: supported, ◦: not supported)
Research Life-cycle Support SEM SYN POS-WORD POS-PHR Tool Support

Deiβenböck and Pizka (2005) Code Review + ◦ + ◦ ++
Lawrie et al. (2006) Code Review + ◦ + ◦ ++
Abebe et al. (2008) Code Review ◦ ◦ ◦ + ++
Abebe and Tonella (2013) Code Writing + + ◦ ◦ ◦
Hughes (2004) Code Review/Writing ◦ + ◦ ◦ ++
Our Approach Code Review ++ ++ ++ ++ ++

Arnaoudova et al. (2013) defined a new term Linguistic Anti-Patterns to identify recur-
ring poor practices in naming and choosing identifiers. They categorized the anti-pattern
into six sub-groups: three for the methods and the other three for the attributes. For example,
the methods that started with the verb get (e.g., getImageData) and not just returned an
attribute value were classified into the ‘do more than it says’ group, which is one of the cat-
egories for the linguistic anti-patterns. This is in the line with Host and Ostvold’ research,
and it is valuable for the detection of the consistent use of the terms throughout the project.

Table 10 summarizes prior studies in terms of the software life-cycle support, the types
of inconsistency and tool supports after carefully selecting research that contributes to
detecting or alleviating inconsistent identifiers. Since POS are not considered for searching
synonyms, researches for SEM has been evaluated with ‘+’. Deiβenböck and Pizka (2005)
and Lawrie et al. (2006) evaluated with ‘+’ for POS-WORD, as homonyms in their research
were related to Word-POS Inconsistency. Abebe and Tonella (2013) presented an approach
that can be used when writing code which supports automatic suggestion of appropriate
words, thus we evaluated it as ‘+’ for SEM and SYN. However, the tool has not been fully
developed yet. Spell Checkers can contribute to an alleviation of SYN and can be used dur-
ing code review and code writing. Our approach covers relatively diverse inconsistencies as
compared to others.

5.3 Comparing the Previous Tool with Our Approach

This section presents comparison between our approach and an existing technique. Among
the previously introduced techniques, we selected LBSDetector developed by Abebe et al.
(2008) because it is publicly available27 and provides a similar feature with phrase-POS
inconsistencies of this paper: Odd Grammatical Structure bad smells. Rules for detecting
the bad smells include:

• Class identifiers should contain at least one noun and should not contain verbs,
• Method identifiers should start with a verb, and
• Attribute identifiers should not contain verbs.

By using LBSDetector, we extracted bad smells for odd grammatical structure in JUnit.
Then, we compared the results with manual detection results by human subjects (see
Section 4.3.2) and those of our approach shown in Section 4. In particular, only phrase-POS

27Lexicon BadSmell Wiki: http://selab.fbk.edu/LexiconBadSmellWiki

http://selab.fbk.edu/LexiconBadSmellWiki

Empir Software Eng (2016) 21:565–604 599

Table 11 Precision, Recall & F-Measure of our approach and LBSDetector

Tools Precision Recall F-Measure

CodeAmigo 0.73 (90/123) 0.67 (90/133) 0.70

LBSDetector 0.34 (106/303) 0.79 (106/133) 0.48

inconsistencies detected by our approach were used since the inconsistencies are concep-
tually compatible with odd grammatical structure defined in LBSDetector (Abebe et al.
2008).

Initially, LBSDetector found 426 identifiers as bad smells for odd grammatical structure
while our approach detected 148 identifiers for phrase-POS inconsistency. We removed
redundant identifiers to compare them with inconsistencies detected by human subjects. As
a result, 303 and 123 identifiers were obtained for each approach. Then, we conducted pair-
wise comparison between the results by human subjects and each approach with respect to
precision, recall, and F-measure as shown in Table 11.

The precision of our approach was higher than LBSDetector. Note that our approach
figures out the POS of an identifier as a whole by parsing it while LBSDetector only finds
out whether a specific POS is used in an identifier. The different ways of POS interpretation
might lead to the different precision. The recall of LBSDetector was higher than that of
our approach. This might be caused by less strict detection rules of LBSDetector than our
approach.

We examined the detection results to figure out the intersection and disjoint sets between
three different detection sources. The result of examination is shown in Fig. 13. In the
figure, we focused on the disjoint sets (i.e., the area A and B) of CodeAmigo and LBSDe-
tector detection results in the Human set. In the A area, four method identifiers, forValue,
optionallyValidateStatic, or and allOf, were detected by human subjects and CodeAmigo
together as phrase-POS inconsistency while LBSDetector could not detect them. In addi-
tion, four class identifiers, Assume, Ignore, Assert, Each, were not detected by LBSDetector.
This might be caused by missing information of WordNet and wrong NLP parsing by
Minipar (2014), which is used in LBSDetector.

For the area B, CodeAmigo could not detect three identifiers Protectable, comparator,
and errors due to WordNet’s missing information. Ten identifiers were not detected by

Fig. 13 Detection results by our
approach, LBSDetector, and
human subjects for JUnit.
“Phrase-POS inconsistency” of
our approach and “odd Grammar
structure bad smells” of LBSD
detectors were considered since
these are only compatible
inconsistency concepts between
two approaches

LBSDetector (303)CodeAmigo (123)

17713

19

H C
(90)

H L
(106)

L C
(102)

(H C)-L
(8)

(H L)-C
(24)

..

82

A B

C D

600 Empir Software Eng (2016) 21:565–604

Table 12 Comparison of CodeAmigo with LBSDetector (C-CodeAmigo, L-LBSDetector, I-Intersection,
Lu-Lucene, JM-JMeter, JHD-JHotDraw, SH3D-Sweet Home 3D, Avg-Average)

Lu Ant JM JHD SH3D C Avg

C 307 363 239 223 138 26 216

L 1,711 2,511 3,633 2,116 1,970 404 2,057.5

I 157 277 82 112 58 11 116.1

I/C 51.1 % 76.3 % 34.3 % 50.2% 42.0 % 42.3% 49.4 %

I/L 9.2 % 11.0 % 2.3 % 2.3 % 2.9 % 2.7 % 5.6 %

our approach (e.g., RunWith and defaultComputer) due to the Stanford parser’s errors. In
addition, CodeAmigo could not detect 11 custom naming conventions (e.g., attributes start-
ing with f- that JUnit denotes it as a field) but LBSDetector could. For example, the attribute
identifiers fUnassigned, fExpected, fActual were only detected by LBSDetector.

There were 33 false positives of our approach (see the C area in Fig. 13) such as test-
Started(), testFailed(), fireTestRunStarted(), and formatClassAndValue(), each of which are
caused by wrong NLP Parsing. LBSDetector detected 197 false positives (the D area).
For example, class identifiers such as Rule, TestClass, TestSuite, and method identifiers
including getIncludedCategory(), hasItem(), compact().

These false positives of both approaches were mostly caused by wrong NLP parsing. This
indicates that template-based preprocessing of an identifier is necessary before applying an
NLP parser to identifiers (Abebe and Tonella 2010). In addition, some of false positives
such as setUp() and main() were found in idioms of Code Dictionary. The gap of the false
positives can be understood as the phrase-POS inconsistency was more helpful than odd
grammatical structure to reduce false positive but less rigid rules can detect violations of
custom naming conventions.

We also compared inconsistency results of odd grammatical structure bad smells detected
by LBSDetector and phrase-POS inconsistencies detected by our approach for six remain-
ing projects and summarized the results in Table 12. All redundant identifiers had been
removed. 49.4 % of inconsistency results by CodeAmigo were also discovered in those of
LBSDetector on average while 5.6 % of inconsistencies by LBSDetector were found in
those of CodeAmigo. This implies that LBSDetector resulted in a higher number of false
positives.

6 Conclusion

In this paper, we have presented an approach, based on a Code Dictionary, which detects
inconsistent identifiers. This approach first builds a code dictionary containing domain
words with dominant POS information and idioms that are frequently discovered in the
popular open source projects. The approach then detects semantic, syntactic, and POS
inconsistent identifiers. The code dictionary helps filter out false alarms, and the evaluation
results indicated that our approach accurately detected inconsistent identifiers. 8 out of 10
identifiers detected by our approach were found to be correctly identified, according to the
human subjects. In addition, an interview with six developers confirmed that our approach
was helpful for automatically finding inconsistent identifiers. By using this approach,
developers can identify inconsistent identifiers, and can therefore improve software

Empir Software Eng (2016) 21:565–604 601

maintainability. For future work, we are planning to survey diverse types of inconsistencies
in the source code in order to improve software maintenance.

Acknowledgments This paper was supported by research funds of Chonbuk National University in 2014.
This research was supported by Next-Generation Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
(NRF-2014M3C4A7030505).

Appendix A: List of Domain Word POSes and Idioms

Table 13 Domain words with the dominant POS information extracted from the API document of projects
with the parameter TWO = 100 and TPR = 0.8 (indicates a word evaluated as invalid in the
preliminary study. The precision is computed as 176/191 = 0.921)

602 Empir Software Eng (2016) 21:565–604

Table 14 Idiom identifiers extracted from the API document of projects listed in Table 1, where
T (FOf mw) = 2, T (FOcls) = 2, T (FOatt) = 2, and T (FOmet) = 10

References

Deiβenböck F, Pizka M (2005) Concise and Consistent Naming. In: Proceedings of International Workshop
on Program Comprehension(IWPC), St. Louis, pp 261–282

Lawrie D, Field H, Binkley D (2006) Syntactic Identifier Conciseness and Consistency. In: Proceedings
of IEEE International Workshop on Source Code Analysis and Manipulation(SCAM). Philadelphia,
Pennsylvania, pp 139–148

Martin RC (2008) Clean Code: A Handbook of Agile Software Craftsmanship, 1st edn. Prentice Hall
Higo Y, Kusumoto S (2012) How Often Do Unintended Inconsistencies Happen?-Deriving Modification

Pattern and Detecting Overlooked Code Fragments-. In: Proceedings of the 28th international conference
on software maintenance, Trento, pp 222–231

Abebe SF, Haiduc S, Tonella P, Marcus A (2008) Lexicon Bad Smells in Software. In: Proceedings of
working conference on reverse engineering, Antwerp Belgium, pp 95–99

Hughes E (2004) Checking Spelling in Source Code. IEEE Software, ACM SIGPLAN Not 39(12):32–38

Empir Software Eng (2016) 21:565–604 603

Delorey DP, Kutson CD, Davies M (2009) Mining Programming Language Vocabularies from Source Code.
In: Proceedings of the 21st conference of the psychology of programming group (PPIG), London

Lawire D, Binkley D, Morrel C (2010) Normalizaing Source Code Vocabulary. In: Proceedings of the 17th
working conference on reverse engineering, Boston, pp 3–12

Abebe SL, Tonella P (2010) Natural Language Parsing of Program Element Names for Concept Extraction.
In: Proceedings of international conference on program comprehension(ICPC), Minho, pp 156–159

Falleri J, Lafourcade M, Nebut C, Prince V, Dao M (2010) Automatic Extraction of a WordNet-like Identifier
Network from Software. In: Proceedings of international conference on program comprehension (ICPC),
Minho, pp 4–13

Abebe S, Tonella P (2013) Automated identifier completion and replacement. In: Proceedings of the european
conference on software maintenance and reengineering (CSMR), Genova, pp 263–272

Host EW, Ostvold BM (2009) Debugging Method Names, Proceedings of the 23rd European Conference on
Object-Oriented Programming. Lect. Notes Comput. Sci 5653(1):294–317

Lee S, Kim S, Kim J, Park S (2012) Detecting Inconsistent Names of Source Code Using NLP. Computer
Applications for Database, Education, and Ubiquitous Computing Communications in Computer and
Information Science 352(1):111–115

Code Conventions for the Java Programming Language: Why Have Code Conventions SunMicrosystems
(1999). http://www.oracle.com/technetwork/java/index-135089.html

Lawrie D, Feild H, Binkley D (2007) Quantifying identifier quality: an analysis of trends. Empir Softw Eng
12(4):359–388

Madani N, Guerroju L, Penta MD, Gueheneuc Y, Antoniol G (2010) Recognizing Words from Source
Code Identifiers using Speech Recognition Techniques. In: Proceedings of 14th european conference on
software maintenance and reengineering(CSMR), Madrid, pp 68–77

Goodliffe P (2006) Code Craft: The Practice of Writing Excellent Code. No Starch Press
WordNet: A lexical database for English Homepage (2014). http://wordnet.princeton.edu/
Haber RN, Schindler RM (1981) Errors in proofreading: Evidence of Syntactic Control of Letter Processing.

J Exp Psychol Hum Percept Perform 7(1):573–579
Monk AF, Hulme C (1983) Errors in proofreading: Evidence for the Use ofWord Shape inWord Recognition.

Mem Cogn 11(1):16–23
Caprile B, Tonella P (1999) Nomen Est Omen: Analyzing the Language of Funtion Identifiers. In:

Proceedings of working conference on reverse engineering, Altanta, pp 112–122
The Stanford Parser: A statistical parser Homepage (2014). http://nlp.stanford.edu/software/lex-parser.shtml
Apache OpenNLP Homepage (2014). http://opennlp.apache.org/
Binkley D, Hearn M, Lawrie D (2011) Improving Identifier Informativeness using Part of Speech Infor-

mation. In: Proceedings of the 8th working conference on mining software repositories, New York,
pp 203–2006

Guapa S, Malik S, Pollock L, Vijay-Shanker K (2013) Part-of-Speech Tagging of Program Identifiers for
Improved Text-Based Software Engineering Tools. In: Proceedings of 21st international conference on
program comprehension (ICPC), San Francisco, pp 3–12

MINIPAR Homepage (2014). http://webdocs.cs.ualberta.ca/lindek/minipar.htm
Toutanova K, Klein D, Manning C, Singer Y (2003) Feature-Rich Part-of-Speech Tagging with a Cyclic

Dependency Network. In: Proceedings of HLT-NAACL, pp 252–259
The Penn Treebank Project (2013). http://www.cis.upenn.edu/treebank/
Budanitsky A, Hirst G (2006) Evaluating WordNet-based Measures of Lexical Semantic Relatedness.

Comput Linguis 32(1):13–47
Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys

Doklady 10(8):707–710
Frakes WB, Baeza-Yates R (1992) Information Retrival : Data Structures and Algorithms. J.J.: Prentice-Hall,

Englewood Cliffs
Apache Lucene Homegage (2013). http://lucene.apache.org/core/
Apache Ant Homepage (2013). http://ant.apache.org/
Apache JMeter Homepage (2013). http://jmeter.apache.org/
JUnit Homepage (2013). http://www.junit.org/
JHotDraw 7 Homepage (2013). http://www.randelshofer.ch/oop/jhotdraw/
Sweet Home 3D Homepage (2013). http://sourceforge.net/projects/sweethome3d
Klein D, Manning CD (2003) Accurate Unlexicalized Parsing. In: Proceedings of the meeting of the

association for computational linguistics, Sapporo, pp 423–430
Code Amigo Validation WebPage (2014). http://54.250.194.210/
Powers DM (2011) Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness &

Correlation. J Mach Learn Technol 1(1):37–63

http://www.oracle.com/technetwork/java/index-135089.html
http://wordnet.princeton.edu/
http://nlp.stanford.edu/software/lex-parser.shtml
http://opennlp.apache.org/
http://webdocs.cs.ualberta.ca/ lindek/minipar.htm
http://www.cis.upenn.edu/ treebank/
http://lucene.apache.org/core/
http://ant.apache.org/
http://jmeter.apache.org/
http://www.junit.org/
http://www.randelshofer.ch/oop/jhotdraw/
http://sourceforge.net/projects/sweethome3d
http://54.250.194.210/

604 Empir Software Eng (2016) 21:565–604

Eclipse-CS Check Style Homepage (2013). http://eclipse-cs.sourceforge.net/
Find Bugs in Java Programs Homepage (2013). http://findbugs.sourceforge.net/
Bloch J (2001) Effective Java Programming Language Guide. Sun Microsystems
Bolch J (2008) Effective Java, 2nd edn. Addison-Wesley
Arnaoudova V, Penta MD, Antoniol G, Gueheneuc Y (2013) A New Family of Software Anti-Patterns:

Linguistic Anti-Patterns. In: Proceedings of the european conference on software maintenance and
reengineering (CSMR), Genova, pp 187–196

Suntae Kim is an Assistant Professor of the Department of Software Engineering at Chonbuk National
University. He received his B.S. degree in computer science and engineering from Chung-Ang University in
2003, and the M.S. Degree and PH.D. Degree in computer science and engineering from Sogang University
in 2007 and 2010. He worked in Software Craft Co. Ltd., as a senior consultant and engineer for financial
enterprise systems during 2002–2004. Also, he developed Android based Smart TV middleware from 2009
to 2010. His research focuses on software architecture, design patterns, requirements engineering, and source
code mining.

Dongsun Kim received the BEng, MS, and PhD degrees in computer science and engineering from Sogang
University, Seoul, Korea, in 2003, 2005, and 2010, respectively. He is currently a research associate at
the University of Luxembourg. His research interests include mining software repositories, automatic patch
generation, static analysis, search-based software engineering (SBSE).

http://eclipse-cs.sourceforge.net/
http://findbugs.sourceforge.net/

	Automatic identifier inconsistency detection using code dictionary
	Abstract
	Introduction
	Background
	Java Naming Convention
	Three Types of Inconsistent Identifiers
	Challenges
	POS Usage
	Domain Words
	Idiom Identifiers
	Tool Support

	Approach
	Phase 1: Building a Code Dictionary
	Parsing API Documents and Recognizing POSes
	Identifying Domain Words
	Extracting Idioms
	Collecting Abbreviations

	Phase 2: Detecting Inconsistent Identifiers
	POS Tagging
	Detecting Semantic Inconsistency
	Detecting Syntactic Inconsistency
	Detecting POS Inconsistency
	Filtering and User Feedback

	CodeAmigo: Tool Support

	Evaluation
	Preliminary Study: Deciding Threshold Values
	Threshold Values for a Code Dictionary
	Deciding Threshold Values for Inconsistent Identifier Detection

	Inconsistent Identifiers Detected by Our Approach
	Analysis of Inconsistency Detection
	RQ1: How Precise are the Inconsistencies Detected by Our Approach?
	RQ2: How Complete are Our Detections?
	RQ3: How Much does Code Dictionary Contribute to Reduce False Positives?
	RQ4: How Frequently do Developers Discover Inconsistent Identifiers and How Useful are Our Detections?

	Threats to Validity
	Construct Validity
	Content Validity
	Internal Validity
	External Validity

	Related Work
	Inconsistency of Source Code Identifiers
	Detecting Inconsistent Identifiers
	Comparing the Previous Tool with Our Approach

	Conclusion
	Acknowledgments
	Appendix A List of Domain Word POSes and Idioms
	References

