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Abstract—Modern web applications often resort to application
development frameworks such as React, Vue.js, and Angular.
While the frameworks facilitate the development of web ap-
plications with several useful components, they are inevitably
vulnerable to unmanaged memory consumption since the frame-
works often produce Single Page Applications (SPAs). Web
applications can be alive for hours and days with behavior
loops, in such cases, even a single memory leak in a SPA app
can cause performance degradation on the client side. However,
recent debugging techniques for web applications still focus
on memory leak detection, which requires manual tasks and
produces imprecise results.

We propose LEAKPAIR, a technique to repair memory leaks
in single page applications. Given the insight that memory leaks
are mostly non-functional bugs and fixing them might not change
the behavior of an application, the technique is designed to
proactively generate patches to fix memory leaks, without leak
detection, which is often heavy and tedious. To generate effective
patches, LEAKPAIR follows the idea of pattern-based program
repair since the automated repair strategy shows successful
results in many recent studies. We evaluate the technique on more
than 20 open-source projects without using explicit leak detection.
The patches generated by our technique are also submitted to
the projects as pull requests. The results show that LEAKPAIR
can generate effective patches to reduce memory consumption
that are acceptable to developers. In addition, we execute the
test suites given by the projects after applying the patches, and
it turns out that the patches do not cause any functionality
breakage; this might imply that LEAKPAIR can generate non-
intrusive patches for memory leaks.

Index Terms—memory leaks, program repair, non-intrusive
fixes, single page applications

I. INTRODUCTION

Up until 2010, the website realm was mostly comprised of
MPAs (Multiple Page Applications), where each page had to
re-fetch and reload the entire webpage for each user request.
The traditional MPA approach incurs a longer page switch
time owing to the server round-trip for each request, and this
delay increases with the size and complexity of the server
APIs. The burgeoning usage of smartphones and mobile apps
and the growing demands for swift and responsive web apps
inspired the web development community to change how web
pages were architected and rendered.

To address the responsiveness of web pages, the concept
of Single Page Applications (SPAs) was first implemented by

†Corresponding author.
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(a) Event listener memory leak in Rooster JS.
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(b) Patch for the memory leak in (a).
Fig. 1: Memory leak in Rooster JS [1] and its corresponding
patch.

AngularJS, whereby rather than updating the entire webpage,
only the data of the same page was updated [2]. In SPAs,
instead of re-fetching and loading entire pages from the
server upon each request, just the data (usually in JSON
format) can be retrieved asynchronously from the server and
inserted dynamically into the application, thereby preventing
page reloads on navigation and data fetch requests [3]. Today,
almost all contemporary social media apps make use of this
architecture [4].

SPAs, however, are vulnerable to memory bloating due to
their architecture in contrast to MPAs. Literally, SPAs maintain
a single web page for a specific application, and every object
should reside in a single page. Therefore, SPAs inevitably rely
on the garbage collectors of browsers to manage the memory
space. Moreover, SPAs are highly likely to retain many loops
(i.e., navigate back to the previous page) and the loops can
rapidly add unnecessary objects that do not get garbage-
collected due to unintentional reference. Such leaks might not
be a problem in MPAs, where on each page navigation, the
page refreshes, clearing all the heap. In SPA, however, such
leaks can easily accumulate to several megabytes as a single
page remains alive for several hours or even days.



Because such memory-leaking patterns are not syntactically
or semantically invalid code, browsers run the program without
throwing any errors, and they go unnoticed in functional
testing as well [5]. Consider the syntactically and semanti-
cally correct code scenario in Figure 1(a) from Microsoft’s
roosterjs library [6]. Based on the React framework, the

class adds a listener for a hashchange event (an event
that is fired every time the part of the URL after the hash
changes [7]), to each new instance of the class, without ever
removing the listener, even after the component unmounts
from DOM. This created a memory leak in the application.

An important point to note in the above scenario is that if
the listener handler was attached to a local element that does
not have references to any other object, it would have been
automatically cleaned up by the garbage collector (GC) once
the class instance was destroyed. In the above case, however,
the event is attached to the global (window) object, which the
GC never cleans up, even after the instance is destroyed. A
simple fix to this memory leak was applied by the project
developers (Figure 1(b)) by explicitly removing the event in
the component destructor function.

There have been a limited number of studies [8], [9], [10],
[11], [12] on the problem of memory leak detection in the
web domain. These studies focus on automating the detection
of memory leaks, the most relevant and notable of which is
BLeak [12], which is an automated memory leak detection tool
for client-side web applications. BLeak requires a scenario file
written by the users to run the app in a loop in a headless
browser and takes around 10 minutes to execute. The details
of other studies will be presented later in the Related Work
section.

We present LEAKPAIR, an approach to generating patches
that repair memory leaks in SPAs. Unlike typical automated
program repair approaches, LEAKPAIR can be applied without
requiring bug locations or relying on leak-detection tech-
niques. It automatically detects code snippets that can poten-
tially cause memory leaks and fixes them using non-intrusive
(i.e., functionality-preserving) transformation rules we mined
from existing code.

While test-driven program repair [13], [14], [15], [16] (also
known as generate-and-validate repair [17]) begins to work
once a bug is detected by test cases, proactive program repair
first applies patches to potential buggy locations. Then, a
proactive approach measures a difference in properties (such
as memory consumption and execution time) between before
and after applying the patches. The difference is provided as
evidence of repair instead of validating patches by test cases,
which is done in test-driven program repair after generating
patches. Thus, proactive repair is a special kind of program
repair approach.

In summary, this paper contributes the following:
• LEAKPAIR, a novel proactive approach to generating non-

intrusive patches for fixing memory leaks in single page
applications (SPAs).

• Four behavior-preserving fix patterns dedicated to re-
pairing memory leaks in SPAs, which LEAKPAIR can

leverage to generate non-intrusive patches.
• Empirical results of evaluating our approach on 37 open-

source projects, which show the effectiveness and non-
intrusiveness when repairing memory leaks in SPAs.

II. BACKGROUND AND MOTIVATION

A. Single Page Web Applications (SPAs)

This section compares Multiple Page Applications (MPAs)
and Single Page Applications (SPAs) and discusses why SPAs
are vulnerable to memory leaks.

In MPA, the actions taken by the user on the webpage
trigger HTTP requests to the server; the server responds with
a new page for each request, which means a page refresh for
each interaction. In addition, the user session and data are per-
sisted on the server; any time the session state or data is needed
or updated, the server needs to be queried, and the client (and
the user) needs to wait for the update to be completed on the
server, resulting in a poor app responsiveness [3].

In contrast, SPA implements the majority of the logic for
view generation on the Client side. A single .html file is
loaded once, at the start of the program load, which is the
only full browser load throughout the app. The single file
contains multiple templates for different ‘views’, which are
rendered on demand. Upon a user query, data is fetched from
the server, and a template is updated with the data in real-time,
without requiring a page reload. In addition, SPA caches all
the received data from the server so that the user is still able to
interact with the app in case of poor connection or connection
loss, and any new data can be synced once the connection
improves/restores [3].

In SPA, the job of merging data with views moves from
the server to the client. The single HTML file (1) contains
templates where data can be inserted and (2) generates a new
‘view’ that is equivalent to a new page in MPA. The logic
of merging the data with the right template, routing to the
right view, and maintaining the life cycle of a single view is
accomplished via SPA frameworks such as Angular, React,
Vue etc. When a user navigates to a “new page”, the SPA
framework is simply switching from one “view” to another [4].

B. Garbage Collection and Memory Leaks in SPAs

In MPAs, memory leakage may not be a critical issue since
the web pages are switched frequently and, as the browser
switches to a new page, the memory reserved by the previous
page is reclaimed by the garbage collector. Most modern web
apps, however, are single-page apps that update the content
without switching the web page. This means that a single
web page can be active for several hours or even days [10].
When memory leakage in such applications accumulates over
time, it not only slows the program execution and causes data
processing latency but may also lead to program crashes and
incompatibility with other applications.

Several existing popular websites (including the libraries
they use) suffer from memory leakage that adversely affects
the responsiveness of the browser. Vilk and Berger [12]
reported that more than 99 percent of Google Chrome crashes



on low-end Android phones are the result of memory issues.
They also identified more than 50 memory leaks in popular
applications, including JavaScript frameworks, and Google ap-
plications. Another leak detection study [18] revealed public-
facing SPAs leaking up to 186 MB per interaction.

Furthermore, as will be demonstrated in the next section,
since such leaks are hard to diagnose, developers rather choose
to invest their time and effort in addressing more ‘apparent’
application issues. Finally, oftentimes developers may wrongly
attribute the lagging app behavior to the user’s browser,
internet connection, or even their systems.

C. Non-intrusive repair without replicating actual memory
leaks

We figured out that it is challenging and non-trivial if
a developer tries to diagnose memory leaks in SPAs. Un-
like manually managed languages (such as C and C++),
the JavaScript standard (ECMAScript), does not provide any
interface for developers to monitor the memory usage of
the app or manipulate the Garbage Collector, which makes
diagnosing the leaking memory a cumbersome task for the
developers [19]. Consider testimonials [20], [21], [22] as well
as the following comments from SPA developers on Github
and StackOverflow regarding the obscure and evasive nature
of memory leaks and their detection:

I looked at the Chrome Dev Tools and taking heap snapshots to see if there is
an increase in memory and it is apparent that there is when I see the memory
shoot from 123MB to 200+MB after a few actions within the application. Now
this is a good tool for determining whether there is a possible memory leak
or not, but it’s absolutely hard to read and understand, which doesn’t help
me determine where the issues lie [23].

This issue has been around for nearly 3 years now. (I usually don’t like to
start a message this way unless I tried something to fix the issue myself...
Which I did here! and failed miserably as it seem quite complex to get to the
bottom of it...[24].

In order to address memory leak issues, the root cause needs
to be diagnosed first. Although there have been automated
techniques and approaches to detect memory leaks in web
applications [8], [9], [10], [11], [12], these techniques have
several limitations, including (1) dependency on the browser’s
heap snapshots, (2) non-trivial effort required for writing a
test-driver script and (3) imprecision.
Non-intrusive patches: Our intuition here is to apply non-
intrusive patches [25] to all potential memory leaks. If the
patches are non-intrusive (i.e., behavior-preserving), it is not
necessary to detect memory leaks before repairing them. As
the patches do not change the behavior of a target program, it
is better to repair as many (potential) leaks as possible, which
eventually improves the maintenance quality. Such patches
are unlikely to introduce new functional bugs and are often
easy to understand. The tradeoff for developers is obvious:
applying these patches is beneficial as they are simple and non-
intrusive. Avoiding the leak detection step is a huge advantage,
as this step is tedious and time-consuming due to the dynamic
analysis involved. A similar approach was used in [25] to fix

performance bugs. However, ours is the first work using non-
intrusive patches to fix memory leak issues, to the best of our
knowledge.
Pattern-based program repair: To fix the memory leak
issues, we employ pattern-based program repair. While we
considered other types of program repair techniques as well,
they were found to be less suitable for fixing memory leaks
proactively. Most existing APR techniques (e.g.[26], [13],
[15]) are test-driven, meaning that they require a test suite
to drive the search for a patch, while we do not assume the
existence of such a test suite. Note that recent neural program
repair techniques (e.g.[27], [28]) also require a test suite to
validate the generated patches. As will be shown in Sec-
tion VI-A, the current neural program repair techniques such
as COCONUT [28] are not capable of fixing the memory leaks
of SPAs. The issue of the trustworthiness of the generated
patches is also a concern for such techniques.

In comparison, we curate patch patterns that are likely to
be non-intrusive and apply them to the potential memory-leak
locations of the program. Our pattern-based program repair
can also be viewed as a static-analysis-based repair similar to
FOOTPATCH [29] and SAVER [30], tools fixing the memory
leaks of C/Java * programs — we statically detect potential
memory-leak locations and fix them. These techniques typi-
cally involve substantial efforts by both tool developers and
users to enable static analysis. For example, SAVER requires
the semantic models for libraries to perform static analysis
and fixing. By contrast, our pattern-based approach does not
involve any heavyweight analysis and can be readily applied
to any SPA program. The event-driven / object-oriented nature
of SPAs makes it easy for the developers to assess the
correctness of the patches — a patch is often applied to an
object destructor, which is called implicitly when an event
occurs. As will be shown in Section V-B, the patches generated
from LEAKPAIR are often accepted by real-world developers,
demonstrating the practical value of our approach.

III. LEAKPAIR

A. Overview

Our approach, LEAKPAIR, consists of two steps: (1) fix
pattern mining, and (2) memory leak repair using the fix
patterns. In the first step, we manually examine program
patches or pull requests addressing memory leaks, together
with commit messages, code reviews available in open-source
projects, and Q&A posts. After identifying common and
recurring fix patterns from the patches, we implement an
edit script for each pattern, which can generate non-intrusive
patches. In the second step, we scan a target project (i.e.,
SPAs) to apply our fix patterns. Each fix pattern can naturally
specify which data or object types are associated with it. A
corresponding edit script can then be applied accordingly. Each
pattern changes all locations, where applicable, in the target
project.

*SAVER cannot handle Java programs.



B. Mining fix patterns for SPA memory leaks

Since our goal is to identify recurring and common patterns
of memory leaks and their corresponding patches in SPAs,
we first collect the most common leaks available publicly
by using specific keywords such as ‘leak’ and ‘React’. Our
search targets were GitHub.com and stackoverflow.com .
Then, we carefully extract common patterns of leaks and their
corresponding patches. Obviously, this is a manual task and
is time-consuming. Nonetheless, numerous previous studies
[16], [31], [25], [32], [33], [14], [15] have demonstrated that
this strategy is effective and useful, as we can reuse the fix
patterns many times once they have been identified.

We use the following search process to collect issues and
discussions relevant to memory leaks: (1) For Stack Overflow,
we search through 1,000 posts whose titles, comments, or
discussions contain keywords such as ‘leak’, ‘memory usage’
or ‘memory leak’ and that explicitly pertain to JavaScript
applications, (2) For GitHub, we search through 1,000 com-
mits, PRs, issues, and discussions containing any of the above
keywords, along with the labels ‘React’ or ‘Angular’ (being
the most commonly used frameworks for SPA development).

After investigating the search results, we collect leak pat-
terns as per the following procedures: (1) We select common
memory leaks reported at least five times across GitHub.com

and stackoverflow.com , (2) the leaks should be acknowl-
edged as valid, by at least two developers, (3) we further
narrow down the leaks, which can be reproduced and tested
locally, and (4) four leak patterns were selected, which are
applicable to SPAs.

For each leak pattern identified in the previous step, we
select fix patterns by looking at their original answers (for
StackOverflow) or discussions (for GitHub). For each leak
type, we extract, as fix patterns, the common fix suggestions
in Stack Overflow that are accepted as the answer in at
least two separate posts. From the leak patterns found in
GitHub commits, we select the patches that were approved and
merged in at least two separate projects. Among the above-
selected fix patterns, we further filter the patterns based on
their applicability to SPA projects.

All identified fix patterns are supported by examining actual
memory footprint changes. We compare the memory footprints
of revisions before and after applying the patches. If there
were no differences between before and after memory
footprints, we discard the fix patterns. We examine the memory
footprints of patches applied to SPAs using MemLab [34].

C. Fix patterns

As already discussed in Section 2.2, the general root cause
of memory leaks in SPA is an unused object that lingers
in memory due to some unwanted reference that was not
explicitly cleared by the developers. Hence, the fix for such
leaks generally involves cleaning up any unwanted references
to objects that have the potential to be retained in memory. In
the SPA domain, this needs to be done when a component

unmounts from the DOM (in the component destructor).

Following the procedure in Section III-B, we identified four
fix patterns for generating non-intrusive patches for repairing
memory leaks in SPAs:
FP1. Unreleased Subscription. In reactive JavaScript
(RxJS), an Observable is a lazily evaluated computation
that can synchronously or asynchronously return zero to
(potentially) infinite values from the time it is invoked
(subscribed) [35]. This indicates that they can keep outputting
values even after the component is destroyed/unmounted,
unless we explicitly tell them to stop. This means each time
the component containing that subscription is rendered, a new
observable is created in addition to the old one, because we
never explicitly unsubscribed from the previous one. The stale
data keeps getting piled up, never getting garbage collected,
creating a memory leak.

In practice, developers may not always be able to figure
out whether the observable they are subscribing to, is fi-
nite or infinite, and in these cases, it is best to explicitly
unsubscribe when the component unmounts/destroys, just to

be safe. This ensures that the Subscription is closed (if it was
not already) and that proper cleanup is carried out. Nothing
else will happen if it was previously closed.
Fix: The takeUntil() operator allows a notified
Observable to emit values until a value is emitted

from another Observable [36], i.e., the takeUntil()

operator completes the stream it is attached to, when an
Observable provided to itself, emits a value. Thus, if we
provide observer2 (see pseudo-code below) as input
to the takeUntil() operator, and in the destructor we
make observer2 emit a value (using the next() and
complete() methods), that will clear the subscription and

thus prevent the memory leak†.

- observer1.subscribe(() => {...})
+ observer1.pipe(takeUntil(observer2)).subscribe(() =>

{...})
...
+ destructorMethodDeclaration() {

...
+ observer2.next()
+ observer2.complete()
+ }

FP2. Unremoved Event Listener. The notion of retaining
paths is critical for finding the root cause of a memory leak. A
retaining path is a chain of objects that prevents the garbage
collection of the leaking object. The chain starts at a root
object, such as the global object of the main window. The
chain ends at the leaking object.

Active event listeners will prevent all variables captured in
their scope from being garbage-collected. Once added, the
event listener will remain in effect until (1) it is explicitly
removed with removeEventListener() or (2) the associated
DOM element is removed.
Fix: Unregistering the event listener once the SPA component
unmounts/destroys, by creating a reference pointing to the
listenerHandler (see pseudo-code below) and passing it to

†https://github.com/blackbaud/skyux/pull/376/files



removeEventListener() method‡.
function listenerHandler() {

...
}

...
eventTarget.addEventListener(eventType, listenerHandler ,

options)
...
+ destructorMethodDeclaration() {

...
+ eventTarget.removeEventListener(eventType,

listenerHandler, options)
+ }

FP3a. Uncleared Timers: setTimeOut . The
setTimeout() method executes a function or specified

piece of code once the specified timeout value is reached.
When any object is tied to a timer callback, it will not
be released until the timeout happens. In certain scenarios,
the program’s logic requires the timer to reset itself; this
causes it to run forever, thereby retaining the references of all
the enclosing objects and disallowing the garbage collector
to remove the memory. Even if the developers explicitly
clear the setTimeout() in code conditionally, there is no
guarantee it also caters for situations where the user navigates
away after the setTimeout() is triggered but before the
specified timeout value is reached.
Fix: Because each setTimeout() has its own memory
reference, we must clear each one individually, using the
clearTimeout() method, passing it the ID returned from

the setTimeout() call (which uniquely identifies each
setTimeout() reference). The patch involves clearing the

timeout method just before the component is about to unmount
from DOM i.e in the component destructor§.
- setTimeOut(() => {...})
+ timeOutID = setTimeOut(() => {...})
...
+ destructorMethodDeclaration() {

...
+ clearTimeOut(timeOutID)
+ }

FP3b. Uncleared Timers: setInterval . The
setInterval() method repeatedly calls a function or

executes a code snippet, with a fixed time delay between
each call. Even after the component is unmounted from the
DOM, the setInterval timer will keep on ticking (unless we
explicitly clear the interval in the code), trying to update the
state of a component that’s effectively gone, thereby causing
memory leakage [37]. Even if the developers clear these
interval functions in the code on some condition, there is
no guarantee that the clearing method will get a chance to
execute before the user navigates away.
Fix: Each interval has a separate reference in memory, so we
need to clear each individually, using the returned ID from
the setInterval() method call, which uniquely identifies
the interval method call. The patch involves clearing the timer
just before the component is about to be destroyed i.e., in the

‡https://github.com/microsoft/roosterjs/pull/921/files
§https://github.com/MTES-MCT/monitorfish/pull/953/commits/

1dc01c0d82261bf05277366d954fa5d912632091

component destructor¶.

- setInterval(() => {...})
+ intervalID = setInterval(() => {...})
...
+ destructorMethodDeclaration() {

...
+ clearInterval(intervalID)
+ }

FP4. Uncancelled Animation Frame Requests.
The requestAnimationFrame() Web API method helps de-
termine the count of frames per second to allocate an an-
imation, and execute the provided callback to perform that
animation, before the actual screen loads [38]. Since it is used
for creating animations on web pages, these are usually called
recursively, which again leads to the risk of their execution
post component destruction, retaining all objects in its callback
function, even after they are no longer needed.
Fix: Similar to timers, each requestAnimationFrame() call
also returns an ID unique to that specific request, that we
can use to ensure the request is cancelled just before the
component destroys||.

- requestAnimationFrame(() => {...})
+ let requestID = requestAnimationFrame(() => {...})

+ destructorMethodDeclaration() {
...

+ cancelAnimationFrame(requestID)
+ }

1) Edit script: For each individual fix pattern, we create
a corresponding edit script to actually generate patches for
potential memory leaks. An edit script is another program
that parses the target program and locates potential leaking
objects, where we apply the fix pattern. Each edit script has
two components: (1) a potential leak object locator and (2)
a patch writer. Creating edit scripts is a common procedure
when applying a pattern-based program repair technique [16],
[14], [39], [15], [25]. Therefore, we implement the scripts for
our tool, which are available in our replication package [40].

2) Coverage of the patterns: The four fix patterns cover
most of the fixed memory leaks we have examined. Following
the procedures described in Section III-B, we identified 124
and 65 memory leak bugs in SPAs based on React and Angu-
lar, respectively, as a result. These bugs have been confirmed
and fixed by the developers of the SPAs. Our four fix patterns
can fix 102 out of 124 (82.2%) and 57 out of 65 (87.6%)
already-known React and Angular-related memory leak bugs,
respectively. The distribution of fix patterns (FP1–FP4) for
React leak bugs is 2/124 (1.6%), 37/124 (29.8%), 45/124
(36.3%), and 18/124 (14.5%), resepectively. The distribution
for Angular is 47/65 (72.3%), 7/65 (10.8%), 2/65 (3.1%), and
1/65 (1.5%), respectively. The full list of known memory leak
bugs examined is available in our replication package [40].

¶https://github.com/MTES-MCT/monitorfish/pull/953/files
||https://github.com/carbon-design-system/carbon-addons-iot-react/pull/

2119/files



D. Applying fix patterns

As the second step, LEAKPAIR applies the fix patterns
extracted in the first step (Section III-B). Basically, we assume
that one can apply LEAKPAIR to the whole project by scanning
the source code tree of the project, which implies that the edit
scripts explained in Section III-C1 are executed for each file.
Specifically, it follows the following procedure.

• Parsing and Detecting: LEAKPAIR makes use of the
Babel compiler [41] in conjunction with Facebook’s
jscodeshift [42] to traverse through the JS file (in
the case of a single file path) or all JavaScript files
from the root of the given project path. For each file,
it extracts the AST by leveraging the Babel compiler.
During the AST traversal, LEAKPAIR detects Angular
and React components (Vue is not supported currently)
by matching their syntax definition. Once a component
from these frameworks is identified, it detects whether
the component implements any of the four memory leak
patterns by traversing the AST, visiting each node, and
matching the patterns illustrated in Section III-C.

• Creating Patches: If a leak pattern is matched, it tracks
the file name as well as how many objects are leaking
due to that leak type, i.e., are following the same pattern,
in that specific component. It then generates and adds the
fix in the AST. After the patch is successfully applied, it
updates the count of potentially leaking objects for that
leak type, in the project/file. Finally, it then converts the
AST back to source code by leveraging the Recast [43]
library.

• Repeating and Reporting: LEAKPAIR repeats this pro-
cess for all the files if a project path was specified;
otherwise, the processing completes there. At the end of
the execution, it prints out the repaired file name(s) as
well as the total count of each leak type in the console
(from which the LEAKPAIR command was executed) as
well as in an external json file (if an output path was
specified in the command).

E. Non-intrusive patch generation

As LEAKPAIR aims at proactively generating non-intrusive
patches for memory leaks in SPAs, we apply the following
procedures in addition to the steps of standard pattern-based
program repair techniques [16], [15]:

• Localizing without test cases: Since LEAKPAIR proac-
tively generates patches for memory leaks in SPAs, it does
not rely on external fault localization techniques usually
based on test suites. Instead, our approach scans specific
objects in the source code. For example, FP1 detects all
Observable objects in the target SPA.

• Avoiding redundant fix: Among the detected target
objects, some of them are correctly used and memory
leaks are prevented, where LEAKPAIR does not need to
generate corresponding patches. Our approach carefully
scans the target SPA once again to figure out whether
there is any cleanup code for the specific object for each

TABLE I: Subjects with unknown memory leaks.
ID Program Type SPA Framework Commit Hash

U1 react-zoom-pan-pinch [44] Library React fdc030
U2 Angular Extentions Elements [45] Library Angular d9a4e4
U3 Evergreen [46] Framework React 82c3a8
U4 ngx-datatable [47] Library Angular 6184c9
U5 react-multi-carousel [48] Library React 525793
U6 codetekt (Frontend) [49] Website Angular 7b8289
U7 skbkontur/retail-ui [50] Framework React 32f3cf
U8 Aam Digital [51] Web app Angular 304ff9
U9 Replay’s DevTools [52] Library React 24d10f

U10 ngx-bootstrap [53] Framework Angular 663c70

The full list of subjects used for our experiment is available in the replication package [40].

TABLE II: Subjects with known memory leaks.
ID Program Type SPA Framework Commit Hash

K1 react-zoom-pan-pinch [44] Library React 6e35b3
K2 Fundamental Library for Angular [54] Library Angular be9629
K3 react-multi-carousel [48] Library React 5d252d
K4 Angular Components [45] Framework Angular 1bbb29
K5 Material UI [55] Framework React e92b1c
K6 Angular Components documentation [56] Website Angular e8cb0d
K7 Rooster [6] Library React c3f2f0
K8 Octant [57] Framework Angular b079ad
K9 Evergreen [46] Framework React a716f4

K10 Transloco [58] Library Angular 2338a0

The full list of subjects used for our experiment is available in the replication package [40].

pattern. LEAKPAIR generates a patch by using the pattern
only when there is no cleanup code to avoid redundant
patches, which can unnecessarily bloat the source code.

• Checking non-intrusiveness: For each generated patch,
LEAKPAIR examines whether the patch breaks any func-
tionality. As the regression test suites are often available
for a target SPA, our approach runs the suites to find any
behavior changes. Although test cases may not guarantee
complete behavior integrity, the test results may show the
correctness of key functionalities for the target SPA.

IV. EVALUATION

A. Research Questions

Our experiments investigate the following research ques-
tions:

1) RQ1. (Effectiveness) How effective is the tool at mini-
mizing/eliminating memory leaks?

2) RQ2. (Acceptability) How useful are generated patches,
as perceived by developers?

3) RQ3. (Non-intrusiveness) What is the impact of our tool
on test suite execution results?

The first research question is designed to assess the amount
of memory reduction when applying LEAKPAIR to SPAs. For
this RQ, we collect a set of known memory leaks and another
set of unknown leaks in open-source projects as experiment
subjects. We apply our tool to the subjects and examine their
memory footprints before and after repair.

While RQ1 assesses the effectiveness, RQ2 focuses on
whether the patches generated by LEAKPAIR can be accepted
by the developers of the open-source projects. As the unknown
leaks used in the experiments for RQ1 are in fact new defects,
we report them as new pull requests and see whether they are
merged or accepted.

As LEAKPAIR is designed to generate non-intrusive patches,
it is necessary to assess whether the patches disrupt the
functionality of the target subjects or cause compilation errors.



Therefore, we designed RQ3 to assess non-intrusiveness. Our
experiments for this RQ try to compile the subject programs
used in the previous RQs and run the test cases already given
for the programs.

B. Experiement Setup

We used the following experiment design to answer the
research questions described in Section IV-A.

1) Subjects: To assess the effectiveness of our tool, we
collected SPAs based on the following criteria:

• Maintained. We choose projects that are still being
maintained and whose last update was less than a year
ago. Archived projects are not considered.

• Number of contributors. Projects with at least 10 con-
tributors are selected. Personal projects are not taken into
account.

• Number of commits. The selected projects have at least
100 commits on their GitHub repository.

• Popularity. Projects with at least 10 stargazers, watchers,
or forks are selected.

• Framework. The selected projects should use either
React or Angular as their base framework, as our target
is SPAs.

Based on the above criteria, we collect a set of projects
with unknown new memory leaks and another set of projects
with already known leaks (i.e., those fixed by the developers).
The projects with already known leaks are necessary to show
whether our tool can reproduce the patches generated by the
developers of the projects. Other projects are collected to
assess the effectiveness of our tool in discovering and repairing
new and unknown memory leak patterns.

As a result, 37 projects are selected as the subjects for our
experiments to assess LEAKPAIR; 19 projects have unknown
new memory leaks while 18 projects out of them have already
known memory leaks. In this paper, we focus on and report
only on the results of 10 unknown and 10 known subjects
due to space limitations. Tables I and II list 10 unknown and
10 known subjects, respectively, out of our 37 subjects; the
complete results of experiments for the entire set of subjects
are available in our replication package [40].

2) Repairing memory leaks: To answer RQ1, our first
experiment applies our tool to the subjects described in Sec-
tion IV-B1. We run LEAKPAIR on the root of each subject so
that it scans the project directories and identifies JavaScript
files. For each source code file, the tool tries to change the
file by applying each pattern. Our tool addresses all locations
if applicable.

After applying LEAKPAIR, we then measure the memory
footprints. Because we need to run the target subject to
determine memory consumption, we create a scenario file for
each subject. Using scenario files is a common procedure when
measuring the memory consumption of web applications. For
example, BLeak [12] and MemLab [34], the most recent
techniques to detect memory leaks, require scenario files to
run the target web applications. The scenario files used for
each subject are available in our replication package [40].

To compare the memory consumption, we compute the
memory footprints before and after applying LEAKPAIR. For
each subject, the corresponding scenario file is executed 10
times with loop=10 (i.e., 10 × 10 times in total for each
subject) since a single loop may not accurately reveal the
memory consumption. We then collect memory consumption
in megabytes (MB) and the number of object clusters [34],
where a cluster is the collection of all retainer paths for all the
leaking objects due to a single leak origin. Applying the Mann-
Whitney U test [59], we compute the statistical significance of
the differences between values before and after patches. Note
that this is not a stage of LEAKPAIR; rather, this is only for
the evaluation.

3) Reporting generated patches: As the unknown memory
leaks are basically newly found bugs, we report the leaks to
the repositories of the subjects. For each patch generated by
our tool, we create a pull request with the patch and memory
footprints before and after applying the tool. The outcome of
the reported pull requests can be Agreed , Disagreed , or
Ignored . The 3 types of outcomes for our PRs are recorded

to answer RQ2.
4) Running test cases on patches: To figure out whether

the patches generated by LEAKPAIR break the functionality
of the subjects, we execute the test cases available in the
subjects and count the number of passing and failing cases. As
most of the popular open-source projects maintain (regression)
test suites, we simply run the test cases included in the
subjects. Many subjects use test automation frameworks; in
that case, we resort to those frameworks; otherwise, we follow
the instructions available in the contribution guide for each
subject. We also compare the number of passing/failing test
cases before and after applying LEAKPAIR. The results of this
experiment can answer RQ3.

V. RESULTS

This section presents and analyzes the results of experiments
to answer the research questions described in Section IV.

A. RQ1: How effective is LEAKPAIR?

The patches generated by LEAKPAIR can reduce memory
consumption, as shown in Tables IV and III. We apply the
tool to each subject listed in Tables I (projects with unknown
memory leaks) and II (projects with already known leaks)
according to the procedure described in Section IV-B2. In the
result tables, the Leak Patterns column lists the fix patterns
(see Section III-C) successfully applied to each subject. The
Leaked Objects ∗ columns represent the number of clusters

in which objects are potentially leaking the memory space,
before and after applying our tool, and the difference. The
Heap Size ∗ columns show the size of the heap in each

subject before and after applying our tool, and the difference.
As shown in Tables IV and III, respectively, LEAKPAIR

can reduce both memory consumption and potentially leaking
objects. The statistical significance of the differences are de-
noted as ∗:p-value<0.05 and ∗∗:p-value<0.01. The reduction
is relatively larger for the subjects with unknown leaks. The



TABLE III: Memory consumption results before and after applying LEAKPAIR to the subjects in Table I.

ID Leak Patterns Leaked Objects Leaked Objects Leak Object Heap Size Before Heap Size After Total Heap
Before applying LEAKPAIR After applying LEAKPAIR Reduction applying LEAKPAIR applying LEAKPAIR Size Reduction

U1 FP3 4 clusters 3 clusters 1 cluster 47.9 MB 43.7 MB 5.2 MB (10.8%)∗∗
U2 FP1, FP2 13 clusters 10 clusters 3 clusters 17.4 MB 16.7 MB 0.7 MB (4%)∗∗
U3 FP4 5 clusters 3 clusters 2 clusters 35.5 MB 29.2 MB 6.3 MB (17.7%)∗∗
U4 FP3, FP4 8 clusters 7 clusters 1 cluster 83.9 MB 66.9 MB 15.0 MB (17.8%)∗∗
U5 FP3 5 clusters 4 clusters 1 cluster 27.9 MB 23.5 MB 3.4 MB (12.1%)∗
U6 FP1, FP3 12 clusters 9 clusters 3 clusters 65.1 MB 63.6 MB 1.5 MB (2.3%)∗∗
U7 FP3 7 clusters 5 clusters 2 clusters 105 MB 100 MB 5.0 MB (4.7%)∗
U8 FP1 2 clusters (95,352 objects) 2 clusters (73,951 objects) 20,000+ objects 318.9 MB 264.3 MB 57.6 MB (18%)∗∗
U9 FP3 5 clusters 3 clusters 2 clusters 27 MB 26.4 MB 0.6 MB (2.2%)

U10 FP1 6 clusters 4 clusters 2 clusters 101.7 MB 99.7 MB 2.0 MB (1.9%)∗∗

∗: p-value < 0.05, ∗∗: p-value < 0.01. The full list of subjects used for our experiment is available in the replication package [40].
TABLE IV: Memory consumption results before and after applying LEAKPAIR to the subjects in Table II.

ID Leak Patterns Leaked Objects Leaked Objects Leak Object Heap Size Before Heapsize After Total Heap
Before applying LEAKPAIR After applying LEAKPAIR Reduction applying LEAKPAIR applying LEAKPAIR Size Reduction

K1 FP2 3.9 clusters 3.1 clusters 0.8 clusters 28.19 MB 28.09 MB 0.1 MB (0.3%)∗
K2 FP1 1 cluster (70.7 objects) 1 cluster (66.9 objects) 3.8 objects 53.4 MB 52.1 MB 1.3 MB (2.4%)∗∗
K3 FP3 5 clusters 4 cluster 1 cluster 17.19 MB 16.87 MB 0.32 MB (1.8%)
K4 FP1 5.6 clusters 5.3 cluster 0.3 cluster 13.08 MB 12.98 MB 0.1 MB (0.7%)∗
K5 FP3 13.8 clusters 13.7 clusters 0.1 clusters 13 MB 12.9 MB 0.1 MB (0.7%)
K6 FP1 2 clusters (245.6 objects) 2 clusters (154.5 objects) 91.1 objects 11.8 MB 11.8 MB 0.0 MB (0%)
K7 FP2 4 clusters (4370.8 objects) 4 clusters (4295.2 objects) 75.6 objects 10.9 MB 10.87 MB 0.03 MB (0.2%)
K8 FP1 16.4 clusters 15.6 clusters 0.8 clusters 61.08 MB 60.88 MB 0.9 MB (1.4%)
K9 FP3 4 clusters (3923.9 objects) 4 clusters (3662.7 objects) 261.2 objects 27.5 MB 27.3 MB 0.2 MB (0.7%)∗

K10 FP1 1 cluster 0 cluster 1 cluster 9.2 MB 9.2 MB 0.0 MB (0%)

∗: p-value < 0.05, ∗∗: p-value < 0.01. The full list of subjects used for our experiment is available in the replication package [40].
TABLE V: Results of pull requests reporting the patches
generated by LEAKPAIR, which fix unknown leaks in subjects
listed in Table I.

Agreed Disagreed Ignored TotalMerged Approved Improved
9 2 1 0 8 20

higher effectiveness shown in Table III might indicate that the
subjects with unknown leaks paid less attention to memory
management while those in Table IV paid more attention;
which is why we could identify already-known memory leak
patches from the subjects.

The patches do not introduce any new leaks, as shown
in the plots in Figure 2. The plots illustrate the changes in
the memory heap size in one execution for each subject.
Although there was some fluctuation due to the nature of web
applications (e.g., it can be affected by the browser status even
for the same scenarios), it turns out that our patches contribute
to reducing memory consumption, or at least, they do not add
to it. One of the patches ( K9 ) reduces the heap size even
more than the developer’s patch.

The results of our experiments may imply that LEAKPAIR
is effective for most SPAs, no matter how it is maintained. It
might be helpful to reduce the memory consumption, and it
can further prevent potential memory bloats. Furthermore, it
does not add any harmful code and does not increase memory
consumption in any way.

Answer to RQ1: LEAKPAIR can generate patches to fix
memory leaks in SPAs without leak detection, and the
patches successfully reduce applications’ memory consump-
tion. It turns out that they are competitive with the original
patches written by human developers.

B. RQ2: Are the patches by LEAKPAIR acceptable?

To assess the acceptability of patches generated by LEAK-
PAIR, a live study was carried out on active open-source SPA
projects (including SPA websites and libraries used by them),
as described in Section IV-B3.

The study involves creating pull requests (PRs) for patches
by LEAKPAIR for the subjects in Table I, and observing the
outcome of pull requests. We submitted 20 pull requests for
17 of those subjects after clustering similar leaks/patches and
confirming a substantial reduction in the count of memory
leaks or heap size by the patches, together with the analysis
results by Memlab [34].

Table V contains the results of the live study up to the
date of the submission. 11 out of 20 PRs (60%) are approved
by the developers, out of which 9 were merged directly.
One PR led to the creation of a separate PR by the project
developers based on the changes in our PR, which addressed
the same leak patterns but used a slightly different approach
(in compliance with their specific programming conventions),
which was then merged. The leak patterns repaired in 2 of the
PRs are approved as anti-patterns by the authors that need to
be addressed; however, the PRs for them have not yet been
merged. The authors have taken note of our repairs and plan
to address the leak patterns themselves in the near future.

One of our PRs inspired the project owner to fix a similar
memory leak pattern together with the one in the PR. It is
worth noting that no PR has been rejected so far, which further
corroborates the non-intrusive nature of LEAKPAIR patches.
Eight PRs did not get any response from the developers up to
the date of submission.



2.5 5.0 7.5 10.0
Loop Iteration Step

28

29

30

31

32
He

ap
 S

ize
 (M

B)

no patch
LeakPair

(a) U1

2.5 5.0 7.5 10.0
Loop Iteration Step

12

14

16

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(b) U2

2.5 5.0 7.5 10.0
Loop Iteration Step

27.5

30.0

32.5

35.0

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(c) U3

2.5 5.0 7.5 10.0
Loop Iteration Step

100

200

300

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(d) U4

2.5 5.0 7.5 10.0
Loop Iteration Step

16

18

20

22

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(e) U5

2.5 5.0 7.5 10.0
Loop Iteration Step

30

35

40

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(f) U6

2.5 5.0 7.5 10.0
Loop Iteration Step

100

150

200
He

ap
 S

ize
 (M

B)
no patch
LeakPair

(g) U7

2.5 5.0 7.5 10.0
Loop Iteration Step

100

150

200

250

300

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(h) U8

2.5 5.0 7.5 10.0
Loop Iteration Step

25

26

27

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(i) U9

2.5 5.0 7.5 10.0
Loop Iteration Step

25

50

75

100

He
ap

 S
ize

 (M
B)

no patch
LeakPair

(j) U10

2.5 5.0 7.5 10.0
Loop Iteration Step

28

30

32

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(k) K1

2.5 5.0 7.5 10.0
Loop Iteration Step

49

50

51

52

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(l) K2

2.5 5.0 7.5 10.0
Loop Iteration Step

14

16

18

20

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(m) K3

2.5 5.0 7.5 10.0
Loop Iteration Step

30

40

50

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(n) K4

2.5 5.0 7.5 10.0
Loop Iteration Step

10

15

20

25

30

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(o) K5

2.5 5.0 7.5 10.0
Loop Iteration Step

11.5

12.0

12.5

13.0

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(p) K6

2.5 5.0 7.5 10.0
Loop Iteration Step

10

12

14

16

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(q) K7

2.5 5.0 7.5 10.0
Loop Iteration Step

75

100

125

150

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(r) K8

2.5 5.0 7.5 10.0
Loop Iteration Step

28

30

32

34

36

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(s) K9

2.5 5.0 7.5 10.0
Loop Iteration Step

9.10

9.15

9.20

9.25

9.30

He
ap

 S
ize

 (M
B)

no patch
developer
LeakPair

(t) K10
Fig. 2: Heap size over loops after applying LEAKPAIR to the subjects listed in Tables III and IV.

TABLE VI: Test execution applying LEAKPAIR to the sub-
jects in Table I.

ID Test results before Test results after Elapsed time before Elapsed time after
applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR

U1 N/A N/A N/A N/A
U2 N/A N/A N/A N/A
U3 46 passed of 46 46 passed of 46 8.1 s 8.4 s
U4 126 passed of 129 126 passed of 129 0.3 s 0.3 s
U5 6 passed of 14 6 passed of 14 3.9 s 1.4 s
U6 101 passed of 101 101 passed of 101 55 s 56.6 s
U7 66 passed of 66 66 passed of 66 119.835 s 120.835 s
U8 1031 passed of 1038 1031 passed of 1038 41.623 s 43.683 s
U9 43 passed of 43 43 passed of 43 6.478 s 6.318 s

U10 12 passed of 12 12 passed of 12 0.3 s 0.3 s

The full list of subjects used for our experiment is available in the replication package [40].

Answer to RQ2: The patches generated by LEAKPAIR are
even acceptable to the developers of the target projects.
While more than half of the patch suggestions are accepted,
there are no explicitly rejected patches.

C. RQ3: Do the patches break the functionality?

To show the non-intrusiveness of the patches generated by
our tool, we ran the test cases of each subject according to
the procedure explained in Section IV-B4. We could not run
test suites for two and four subjects listed in Tables I and II,
respectively. The tables report on the execution time of the
test suites as well.

TABLE VII: Test execution results applying LEAKPAIR to
the subjects in Table II.

ID Test results before Test results after Elapsed time before Elapsed time after
applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR applying LEAKPAIR

K1 N/A N/A N/A N/A
K2 N/A N/A N/A N/A
K3 14 passed of 14 14 passed of 14 41.2 s 35 s
K4 N/A N/A N/A N/A
K5 1610 passed of 1610 1610 passed of 1610 4 s 4 s
K6 64 passed of 64 64 passed of 64 10.01 s 10.2 s
K7 1656 passed of 1750 1656 passed of 1750 1.5 s 1.6 s
K8 275 passed of 277 275 passed of 277 10.582 s 8.549 s
K9 N/A N/A N/A N/A

K10 101 passed of 101 101 passed of 101 3.685 s 3.885 s

The full list of subjects used for our experiment is available in the replication package [40].

As shown in Tables VI and VII, the patches generated by
LEAKPAIR do not introduce any new positive or negative
test outcomes. For subjects with some skipped and failed test
cases, we checked if any new positive or negative test cases
had replaced the previous outcomes. As a result, we found no
replacement, which indicates that our patches do not change
the behaviors of the subjects, at least with respect to the test
suites provided. In addition, no significant differences were
noted with respect to test execution times either.

The results of this experiment show that LEAKPAIR is
unlikely to break the functionality of SPAs when generating
patches to fix potential memory leaks. This implies that the
users of LEAKPAIR may apply the tool without having the



functionality changed. Although running test suites may not
guarantee the non-intrusiveness of patches, our tool is highly
likely to generate patches that preserve the behaviors of the
programs.

Answer to RQ3: According to the test results, the patches
by LEAKPAIR are not intrusive. Although test suites cannot
guarantee their correctness, the patches do not break any
functionality, at least from a maintenance perspective.

VI. DISCUSSION

A. Comparison against state-of-the-art

To the best of our knowledge, LEAKPAIR is the only
program repair tool that fixes memory leaks in JavaScript
programs. As of February 2023, the only alternative pro-
gram repair tool that can deal with Javascript programs is
COCONUT [28]. COCONUT is a recent learning-based pro-
gram repair tool. Since its training data contains Javascript
programs (3,217,093 programs obtained from 10,163 open-
source projects), it can be used to fix Javascript programs. As
a general-purpose APR tool, COCONUT can also be used to
fix memory leaks.

We assess the performance of COCONUT in fixing memory
leaks by applying it to all pairs of buggy and fixed versions
from which we mined our fix patterns. COCONUT, like most
program repair tools, requires buggy lines, which we provide
with ground truth patches. In case the ground-truth fix modifies
multiple lines, we apply COCONUT to each of those lines.
Then, at each buggy line, we compare the ground-truth fix
and the 1,000 COCONUT-generated fixes (COCONUT uses
beam search with a beam width 1,000). In none of the buggy
lines, COCONUT generates a ground-truth fix.
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Fig. 3: Distribution of the BLEU scores of COCONUT-
generated patches.

To assess COCONUT at a finer-granularity level (token
level), we compute BLEU scores at each line. Figure 3 shows
the distribution of the obtained BLEU scores. At each line,
we consider only the maximum score out of 1,000.

Figure 4 shows the patches generated by COCONUT and
LEAKPAIR, as well as the developer patch for the react-zoom-
pan-pinch project**. While the COCONUT-generated patch
appears to be similar to the developer patch with the BLEU
score of 0.62, it is not even syntactically correct. This issue
is typical of learning-based program repair tools. Meanwhile,

**https://github.com/prc5/react-zoom-pan-pinch/pull/270/commits/
6e35b3a552c7780aa0cef944f37a9d60d904a3c3

window.removeEventListener("mouseup", this.onPanningStop,
↪→ passive);

+ document.removeEventListener( ’keydown’, this.
↪→ setKeyPressed , ;

window.removeEventListener("keyup", this.setKeyUnPressed,
↪→ passive);

...
handleCancelAnimation(this);

(a) A patch generated by COCONUT.

window.removeEventListener("mouseup", this.onPanningStop,
↪→ passive);

window.removeEventListener("keyup", this.setKeyUnPressed,
↪→ passive);

...
handleCancelAnimation(this);

+ document.removeEventListener("mouseleave", this.
↪→ clearPanning, passive);

(b) A patch generated by LEAKPAIR.

window.removeEventListener("mouseup", this.onPanningStop,
↪→ passive);

+ document.removeEventListener("mouseleave", this.
↪→ clearPanning, passive);

window.removeEventListener("keyup", this.setKeyUnPressed,
↪→ passive);

...
handleCancelAnimation(this);

(c) The developer patch.

Fig. 4: Patches for the react-zoom-pan-pinch project (↪→
indicates the beginning of the wrapped lines).

LEAKPAIR successfully generates a patch semantically equiva-
lent to the developer patch using the fix pattern FP2. Although
the fix statement is added in a different location than in
the developer patch, it is still semantically equivalent to the
developer patch, since both patches remove the same event
listener of the same event type.

Our COCONUT-experiment results suggest that (1) the
learning-based approach such as COCONUT shows the po-
tential to generate a correct fix (the highest BLEU score is
0.90), but (2) the performance is not as good as being able to
generate a correct fix (not a single version is correctly fixed).
While general-purpose program repair is attractive, it is not
a panacea. For bugs that can be fixed with patterns, such as
memory leaks, our pattern-based approach works better and
more reliably.

B. Threats to Validity

Threats to external validity may lie in the target subjects
that this study uses as they are open-source projects; thus, the
results may not be representative of projects, such as those
using closed-source techniques. In addition, our study focuses
only on JavaScript subjects, while there are other languages
implementing SPAs. This threat might be mitigated since our
target SPA frameworks (i.e., React and Angular) are popular
and representative in the web development community.
Threats to internal validity may include fix patterns manually
extracted by the authors. To address this threat, each fix pattern
is supported by real patches that fix memory leaks in SPAs
implemented by React and Angular.
Threats to construct validity may relate to the test cases
used in the evaluation. To show the non-intrusiveness of the
patches generated by LEAKPAIR, our experiment runs test
cases given by each subject. Although test suites may not prove



the correctness of the behavior in the applications, it might be
enough to preserve major functionalities in the applications
from the maintenance perspective.

VII. RELATED WORK

A. Pattern-based Program Repair

Program repair with fix patterns (or fix templates) was
first introduced by Kim et al. [16], where the authors man-
ually inspected 60,000+ human-written patches. Based on
the inspection, common patterns were derived that were then
implemented as automated fix templates in PAR (Patch-Based
Automated Program Repair). The tool was evaluated by ap-
plying it to 119 real-world bugs and comparing the number
of patches generated by PAR that were approved by 253
human subjects with those generated by GenProg [26]. Patches
generated by PAR were shown to have a higher acceptance
ratio.

Pattern-based program repair has been improved and lever-
aged with many other ideas. There are studies that extract
patterns for different targets such as JavaScript faults [31]
and performance bugs [25]. Researchers leveraged diverse
sources of fix patterns, for example, Q&A posts [32], similar
snippets [33], fault localization results [14], and static analysis
warnings [39]. In addition, TBar [15] incorporated common
fix patterns from other existing studies and showed that fix
patterns are effective when fixing bugs.

Fix patterns are also utilized to generate non-intrusive
patches as well. The authors of Caramel [25] examined patches
submitted to fix performance bugs in open-source projects
written in C and Java languages. The technique identifies
potential performance issues in a program. and generates
patches that do not change the functionality of the program,
i.e., non-intrusive fixes.

B. Memory Leak Debugging

There have been some techniques proposed to address
memory leaks in Javascript projects. Qian et al. [10] pro-
posed a technique that reports the suspected leaking objects
by collecting the application heap snapshots and using a
lightweight statistical algorithm that combines several heuris-
tics. BLeak [12] is based on the notion that web app users
often return to the same visual state after performing some
actions. The rationale is that visiting the same state should
consume the same amount of memory; therefore, if there is
sustained growth in memory consumption between the loops
to the same state, it is a valid indicator of memory leakage.

Another common line of research involves dynamic ap-
proaches. One dynamic approach for non-garbage-collected
languages, presented by Azhari et al. [8] performs memory
leak detection by memory block growth analysis. Another
dynamic leak detector, DEF LEAK [60], employs symbolic
execution to detect memory leaks across all paths of execu-
tion. LeakSpot [11] addresses memory leaks in JavaScript by
leveraging a heap snapshot model. MemInsight [9] instruments
the JavaScript code and provides a detailed analysis of the
applications’ memory dynamics. Memory Validator [61] is a

popular memory leak and memory errors detection tool for C,
C++, C#, Visual Basic and Fortran.

Recently, memory leak detection techniques have leveraged
neural networks. MVD [62] makes use of a novel kind of graph
neural network called flow- sensitive graph neural network
(FS-GNN). FS-GNN helps capture critical contextual data of
the code by embedding both statements and flow information
in order to learn program semantics. This model can be trained
to learn vulnerability patterns from the source code as well as
detect statements that are suspected to be vulnerable. It does
so by incorporating semantic information such as call relations
and return values from Call graphs into the basic Program
Dependence Graph (PDG).

VIII. CONCLUSION

In this work, we have introduced a novel technique LEAK-
PAIR to fix memory leaks in single page web applications.
Despite the prevalence of single-page web applications and
their memory leaks, there has been no research effort to fix
those bugs automatically. We have shown that by using only a
handful of fix patterns mined from the existing patches, diverse
SPAs of 37 open-source projects can be successfully fixed.
Furthermore, the patches generated by LEAKPAIR are high-
quality (the majority of the pull requests LEAKPAIR made
were accepted by the original developers) and safe to accept
(the fix patterns we use are non-intrusive).

This work also aims at fixing a specific type of bug, i.e.,
memory leaks in single-page applications. The proposed tech-
nique is simple as compared to recent approaches. However,
simplicity does not necessarily imply ineffectiveness. On the
contrary, LEAKPAIR is very effective, as was shown. We view
this as the strength of our approach. For certain types of bugs,
simple pattern-based approaches, like ours, do a good job
without using heavy-weight deep learning or implementing
complex static analysis and proving the correctness of the
analysis.

IX. DATA AVAILABILITY

We make the replication package publicly available, which
includes all the code and datasets to reproduce our experiments
at https://figshare.com/s/5991a6f89800906176a2 [40].
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