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Abstract

Recently, software systems face dynamically changing

environments, and the users of the systems provide chang-

ing requirements at run-time. Self-management is emerg-

ing to deal with these problems. One of the key is-

sues to achieve self-management is planning for select-

ing appropriate structure or behavior of self-managed soft-

ware systems. There are two types of planning in self-

management: off-line and on-line planning. Recent dis-

cussion has focused on off-line planning which provides

static relationships between environmental changes and

software configurations. In on-line planning, a software

system can autonomously derive mappings between envi-

ronmental changes and software configurations by learn-

ing its dynamic environment and using its prior experience.

In this paper, we propose a reinforcement learning-based

approach to on-line planning in architecture-based self-

management. This approach enables a software system to

improve its behavior by learning the results of its behavior

and by dynamically changing its plans based on the learn-

ing in the presence of environmental changes. The paper

presents a case study to illustrate the approach and its re-

sult shows that reinforcement learning-based on-line plan-

ning is effective for architecture-based self-management.

1. Introduction

As software systems face dynamically changing envi-

ronments and have to cope with various requirements at

run-time, they need the ability to adapt to the environments

and new requirements[12, 1]. Increasing demands for more

adaptive software introduced the concept of architecture-

based self-management[11] in which the software system
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can dynamically change its architectural configuration with-

out human intervention. To achieve architecture-based self-

management, lots of challenges should be addressed such

as identifying adaptable requirements, modeling adaptable

software architecture, collecting environmental data, plan-

ning software architecture, and reconfiguring software dy-

namically. Among the challenges, planning software ar-

chitecture is one the key issues to implement autonomy in

architecture-based self-management.

Planning in self-management indicates the ability to

make a decision which represents behavioral or structural

changes to software systems. In other words, planning is an

activity in which a software system maps appropriate struc-

ture or behavior in the presence of a new situation of the en-

vironment or new user requirements. There are two differ-

ent types of planning in self-management[11]: off-line and

on-line planning. Off-line planning represents that map-

pings between situations (or states) and possible software

configurations are made by software construction process

with human intervention. For example, mapping strategies

to invariants described in [5] is one of the off-line planning

because those are specified by an architectural description

language by construction process1.

On-line planning represents that a system can dynami-

cally and autonomously make a decision about mappings

between situations and configurations. In on-line planning,

generally, the software system carries out its task based

on the current configuration and accumulates its experience

(quantitative results of the current configuration to the cur-

rent situation), and then learns the effectiveness of the con-

figuration based on the previous experience. Using learning

data, the system can determine appropriate (generally best-

so-far) mappings in the presence of situation changes. By

repeating this process (execution, accumulation, learning,

and decision making), the system can identify better map-

pings (i.e. improving plans by repeated learning).

1These plans can be injected at run-time (i.e. late binding), but those

plans are eventually identified by analysis and design process with human

intervention

SEAMS’09, May 18-19, 2009, Vancouver, Canada
978-1-4244-3724-5/09/$25.00 © 2009 IEEE ICSE’09 Workshop76



Previous approaches so far to planning in self-

management focus on an off-line planning process where

adaptation plans are previous designed or predefined at con-

struction time[11] and self-contained. Off-line planning is

effective if developers can anticipate every possible map-

ping between situations and configurations. However, it is

difficult to anticipate interrelationships between situations

and actions in actual execution before the deployment of

software. On the other hand, an on-line planning process

enables a software system to generate plans adaptively by

evaluating and learning its behavior, and exploiting the re-

sult at run-time in the presence of uncertain environments.

Thus, if we can provide on-line planning capabilities to a

system, the system can more autonomously adapt its con-

figuration to the environment.

In this paper, we propose an reinforcement learning-

based on-line planning approach to architecture-based self-

managed systems. Specifically, our approach applies Q-

learning[23]. To support reinforcement learning-based on-

line planning in architecture-based software, we present

several elements. Those are (a) representations, which are

discovered from software requirements denoted by goals

and scenarios, (b) fitness functions to evaluate the behav-

ior of a system, (c) operators to facilitate on-line planning,

and (d) a process to apply the previous three elements to

actual run-time execution.

The paper is organized as follows. Section 2 de-

scribes planning approaches to architecture-based self-

management. Section 3 presents our approach which

consists of representation (Section 3.1), fitness (Section

3.2), operators (Section 3.3), and an on-line evolution

process (Section 3.4) to achieve on-line planning in self-

management. Section 4 describes a case study conducted to

verify the effectiveness of our approach. Section 5 summa-

rizes the contributions of the paper.

2. Planning Approaches in Architecture-based

Self-Management

Planning in software systems can be represented as an in-

teraction between an agent and an environment, as depicted

in Figure 1[18]. This model shows the ideal interaction in

which the agent can immediately monitor states of the en-

vironment and observe rewards from the environment after

the agent gives an action to the environment. In the inter-

action model, a software system plays a role as an agent.

The system monitors the current state (st) of the environ-

ment (where the software system operates) and observes

the current reward (rt) which is a special numerical value

from the environment. Based on the state and observed re-

ward, the software system (agent) selects and takes an ac-

tion (at). The taken action at influences the environment.

After applying the action, the environment transitions into
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Figure 1. The agent-environment interaction

in reinforcement learning.
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Figure 2. The software system-environment
interaction in self-management.

the next state (st+1) and produces a reward. The software

system(agent) selects a new action (at+1) based on the cur-

rent state (st+1) and reward (rt+1). This continual interac-

tion is the basis realizing the autonomy of self-management.

However, the ideal model is not appropriate for actual

software systems. State transition and reward observation

can be delayed because it takes time until the given ac-

tion affects the environment. If this timing issue is ignored,

the system cannot monitor the state transition properly nor

observe an appropriate reward. Hence, the systems need

a modified interaction model for self-managed software as

depicted in Figure 2. In the model, the difference from the

model shown in Figure 1, is the existence of ‘situation it’.

This allows the system to know when it must monitor the

state and reward, and also when it must take the action cor-

responding to the state. In other words, it triggers the adap-

tation of self-managed systems.

One remaining issue is how this interaction model can be

implemented in architecture-based self-management. Sup-

pose that we can observe a finite set of situations that a soft-

ware system can encounters and let S be the set. Let C be a

finite set of architectural configurations that the system can

take. When a situation (s ∈ S) occurs, if the system can

always choose the best architectural configuration (c ∈ C,

like to actions in Figure 2) among possible configurations
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of the system, then we can say the system have a set of the

best plans to the environment. This is can be formulated by:

P : S → C (1)

V (si, P (si)) = max
∀cj∈C

{V (si, cj)}, ∀si ∈ S (2)

where P in equation (1) is a planner which maps each

situation (s ∈ S) into an appropriate configuration (c ∈
C) during the system’s execution. V in equation (2) is a

value function which calculates the value of a configuration

based on the given situation si ∈ S. Equation (2) indicates

if the configuration that the planner P chosen is the best

configuration, P is the best planner in the environment. One

of the primary goals of researchers in self-management is

to find an optimal planner which can autonomously make

plans even in dynamically changing environments. The rest

of this section discusses two planning approaches to find an

optimal planner in architecture-based self-management.

2.1. Off-line Planning

In architecture-based self-management, off-line plan-

ning means that decisions which define the relationship be-

tween situations and plans (i.e. configurations) are made

prior to run-time. In other words, whenever a system en-

counters a specific situation si from an environment each

time, the system selects and executes exactly one identical

configuration ci. Solutions so far to self-managed systems

focus on off-line planning[11]. For example, plans are made

by a system administrator through console or hard-coded

by a developer[14], architectural adaptation is described by

mapping invariants and strategies in ADL description[5], or

architectural changes are triggered by utility functions[4].

These off-line approaches can be effective if developers

can identify well-defined goals, states, configurations, re-

wards, and their relationships along with test environments

that exactly illustrate the characteristics of the actual op-

erating environments before deployment time. However,

it is very difficult to identify them due to the nature of

planning[9]. However, On-line planning, which gives more

effective autonomy in architecture-based self-management,

presents an alternative to overcome the limitation of off-line

planning.

2.2. On-line Planning

On-line planning in architecture-based self-management

represents that a software system can autonomously choose

a configuration with respect to the current situation that

the system encounters. Generally, an on-line planning

process has three major steps: selection, evaluation,

accumulation[9, 10]. In the selection step, the system au-

tonomously chooses a configuration which is suitable for

the current situation. Generally, the configuration is cho-

sen by the greedy selection strategy in which the best-so-far

configuration is chosen. However, this strategy may lead to

the problem of local optima. Hence, the system must adjust

its strategy between exploitation and exploration. Exploita-

tion represents that the system chooses a greedy configura-

tion while exploration means that the system intentionally

chooses an suboptimal or random configuration to find a

better solution. It is important to adjust the ratio of two

strategies because it determines the planning performance.

In the evaluation step, the system must estimate the ef-

fectiveness of the configuration which is taken in the selec-

tion step. The key issue in the evaluation step is to define

the way to determine the numerical values which represent

the reward of the configuration because the numerical rep-

resentation enables the accumulation and comparison of the

rewards. In the accumulation step, the system stores the nu-

merical values identified in the evaluation step. The system

must adjust the accumulation ratio between already accu-

mulated knowledge and newly incoming experience. If the

system uses accumulated knowledge too much in the accu-

mulation step, it may slow down accumulation speed. On

the other hand, if the system uses new experience too much

in the step, it may cause ineffective accumulation. With

accumulated knowledge, the on-line planner can select an

appropriate action in the next selection step.

With these steps, self-managed systems can take advan-

tage of on-line planning in the presence of dynamically

changing environments. The next section describes how on-

line planning can be applied to actual systems in detail.

3. Q-learning-based Self-Management

This section presents an approach to designing

architecture-based self-managed software by applying on-

line planning based on Q-learning. Generally, we need to

consider three elements to apply metaheuristics such as re-

inforcement learning; those elements are ‘representation’,

‘fitness’, and ‘operators’[7]. In reinforcement learning, the

representations of states and actions (=configurations) are

critical to shaping the nature of the search problem. The

fitness function is used to determine which solution is bet-

ter. The operators enable a system to determine neighbor

solutions which can accelerate the learning process. Hence,

the proposed approach provides state and action represen-

tations that the system can exploit, fitness function design

for the system to determine better solutions, and operators

to manipulate solutions. In addition to these three elements,

the approach provides an on-line evaluation process which

describes the control loop of the system at run-time.
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3.1. Representation

The representations of states and actions are crucial for

designing self-managed software using on-line planning be-

cause it defines the problem space and the solution space of

the system. Their representations are usually depicted in

numerical representation or symbolic code. In the former

case, it is more suitable for neural networks[16] and sup-

port vector machines[3, 22]. A numerical representation is

not appropriate for shaping the problem and solution space

of reinforcement learning which uses discrete information,

because it may cause state explosion which leads to the in-

crease of training time of the system. Hence, the approach

uses symbolic code to represent the problem(state) and so-

lution(action) space.

Our approach provides a goal and scenario-based dis-

covery process for more systematic state and action discov-

ery. Goal[20, 13] and scenario-based approaches[21, 17]

are widely used for the elicitation of software requirements.

Also, goal and scenario discovery have been studied[15].

Goals denote the objectives that a system must achieve,

for example, ‘maintain high throughput in a communica-

tion system’ or ‘minimize response time’. Scenarios rep-

resent a sequence of events to achieve a specific goal, for

example, ‘the system is given user input and store them into

databases’. Goals are structured hierarchically to represent

the relationship of super and subgoals. A subgoal represents

more specific objectives to achieve its supergoal, eventually

it supports the root goal of the goal hierarchy. A goal has

scenarios and they are used for discovering new subgoals

by describing the related goal in detail.

The proposed approach exploits goals and scenarios to

discover states and actions. Once goal and scenario struc-

ture is organized, they can be mapped to states and actions

by reforming them. First, scenarios must be reformed into

the pair of ‘condition→ behavior’ or ‘stimulus → reaction’,

e.g. ‘when the battery of the system is low(condition or

stimulus), turn off the additional backup storage(behavior

or reaction)’. This reforming is depicted in Table 1. In

this table, the discovered goals are listed in sequence (goals

will be used to discover fitness functions as described in

Section 3.2). The scenarios of a specific goal are listed

by the goal. Each scenario is reformed into two additional

columns: Condition(stimulus) and Behavior(reaction).

States are identified from the scenarios. Conditions in

the scenarios can be candidates of states. A condition rep-

resents a possible state of the system, e.g. ‘the system’s

battery is low’ implies ‘low-battery’ or ‘the system’s bat-

tery is full’ implies ‘full-battery’. These conditions depict

physical states of the system, i.e. what the environment has

or shows. Thus, a group of conditions represents a dimen-

sion(type) of states, for example, ‘battery-level’ is a dimen-

sion of state information and it can have value, either ‘low-

battery’ or ‘full-battery’. While this information represents

a long-term state of the environment, a situation represents

a transient change of the environment, e.g. ‘hit by wall’ in

an autonomous mobile robot system. Situations are triggers

to begin the adaptation of the system. Situations can also

be identified from condition information. The condition,

which describes a transient event such as ‘when the system

is hit by bullet’, can be transformed into a situation.

One more element which must be considered when talk-

ing about states is the current software architecture of the

system. Although the architecture is not part of the environ-

ment, it can influence the planning of the system, for exam-

ple, it can be used to find an admissible action set. An archi-

tecture can be denoted by symbolic notation which consists

of a vector of components and connects e.g. (component:A,

component:B, component:C, connector:A-B, connector:B-

C). To simplify them, it can be transformed into a unique

architecture identifier, e.g. arch:1a.

These three pieces of information(situation, long-term

state, architecture) compose the state information. An ex-

ample of elements of state information is depicted in Ta-

ble 2. The state information of the system can be denoted

in a vector form such as (situation, long-term

state, architecture information). For ex-

ample, (hit-by-wall, near, low, arch:1a) and (hit-by-wall,

far, full, arch:1a), which are combinations of elements from

Table 2.

Actions can be identified by extracting behavior or reac-

tion from scenarios. As depicted in Table 1, a set of behav-

ior(reactions) is identified in a pair of conditions(or stimuli).

If these pairs between conditions and reactions are fixed be-

fore deployment time, it can be considered off-line plan-

ning, i.e. static plans. The goal of this approach is on-line

planning in self-management, the set of actions should be

discovered separately. Similar to state information, actions

can be identified by discovering action elements and group-

ing the elements into a type. For example, first, identify ac-

tion elements such as ‘stop moving’ or ‘enhance precision’.

Then, group the elements which have the same type.

Examples of action elements and its type are shown in

Table 2. With these pieces of information, each action can

be represented by a vector form such as (precise maneuver,

rich) or (stop, text-only) where the first dimension is

‘Movement’ and the second one is ‘GUI’. An action ele-

ment such as ‘rich’ in GUI or ‘stop’ in Movement, implies

architectural changes which include adding, removing,

replacing a component, and changing the topology of an

architecture. Hence, each action must be mapped with a set

of architectural changes. For example, the action ‘(precise

maneuver, rich)’ can be mapped with a sequence of

‘[add:(visionbased localizer), connect:

(visionbased localizer)-(pathplanner),

replace: (normal gui)-by-(rich gui)]’
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Table 1. Reformed goals and scenarios
Goal Scenario Condition(stimulus) Behavior(reaction)

Goal 1

Maximize

system

availability

Sc. 1-1 when the battery of

the system is low , turn off the

additional backup storage

Cond. 1-1 the battery

of the system is low

Beh. 1-1 turn off

the additional backup

storage

Sc. 1-2 . . . Cond. 1-2 . . . Beh. 1-2 . . .

Goal 2 . . . Sc. 2-1 . . . Cond. 2-1 . . . Beh. 2-1 . . .

. . . . . . . . . . . .

Goal n.m . . . Sc. n.m-1 . . . Cond. n.m-1 . . . Beh. n.m-1 . . .

Table 2. An example of state and action information

Situation
State(long-term) Action

Type Range Type Range

hit-by-wall distance {near, far} Movement {precise maneuver, stop, quick

maneuver}
hit-by-user battery {low, mid,

full}
GUI {rich, normal, text-only}

where (...) indicates a component name.

The discovery process shown in this section identifies

states and actions by extracting data elements from goals

and scenarios. Because goals and scenarios directly repre-

sent the objectives and user experiences, and also they show

how the system influences the environment, the number of

states and actions can be limited. In other words, it helps

the system prevent a state explosion.

3.2. Fitness

The fitness function of the system is crucial because it

represents the reward of the action that the system chooses.

The function provides a criterion to evaluate the system’s

behavior. Specifically, in autonomous systems, it is neces-

sary to know which of two actions is the better according

to the current state. Hence, rewards that the fitness func-

tion generates are usually represented by numerical num-

bers which can be compared to each other. The fitness

function is usually application specific, so it is important to

discover the function from systems requirements. Our ap-

proach exploits the goal and scenario structure discovered

in Section 3.1. In particular, goals are the source of fitness

discovery.

Generally, goals, especially higher ones including the

root goal, are too abstract to define numerical functions.

Thus, it is necessary to find an appropriate goal level to de-

fine the fitness function. It is difficult to define universal

rules for choosing appropriate goals which describes nu-

merical functions of the system, but it is possible to propose

a systematic process to identify the functions. The follow-

ing shows the process to define the fitness function. This

process must be manually conducted by system developers.

1. From the root goal, search goals which can be numer-

ically evaluated by a top-down search strategy.

2. If an appropriate goal is found, define a function

that represents the goal and mark all subgoals of the

goal(i.e. subtree). Then, stop the search of the subtree.

3. Repeat the search until all leaf nodes are marked.

More than one of the fitness functions can be identified

by the discovery process. In this case, it is necessary to inte-

grate the functions into one fitness function. The following

equation depicts the integrated fitness function:

rt = f(t) =
∑

i

wifi(t) (3)

where rt is the reward at time t, f(t) is the (integrated)

fitness function, wi is the weight of the i-th function, fi(t)
is the i-th function of t, and

∑
i |wi| = 1. Equation (3) as-

sumes that the objective of the system is to maximize the

values of all functions fi(t). To minimize a certain value,

multiply −1 to the weight value of the function fi(t). Every

function fi(t) corresponds to the observed data of the sys-

tem at run-time. For example, the observed network latency

100ms at time t is transformed into 10 by the function fi(t)
and multiplied by -1 because it should be minimized.
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3.3. Operators

Different metaheuristics use different operators. For ex-

ample, genetic algorithms use crossover and mutation. The

reason why algorithms use operators is to accelerate search-

ing better solutions. In reinforcement learning, operators

are used to reduce the search space, i.e. the number of ac-

tions. Operator A(s) specifies an admissible action set of

the observed state s. For example, when a mobile robot

collides with the wall, actions, which are related to motion

control are more admissible than those of arm manipulation.

This operator is crucial because it can reduce the training

time of the system.

3.4. On-line Evolution Process

With three elements discussed through Section 3.1∼3.3,

the system can apply on-line planning based on Q-learning.

Q-learning[23] is one of temporal-difference (TD) learn-

ing which is a combination of Monte Carlo ideas and dy-

namic programming ideas[18]. Specifically, Q-learning is

an off-policy TD control algorithm. The reason why we

choose Q-learning is its modeless characteristics. In con-

trast to model-based planners[2, 19], model-free TD meth-

ods can learn directly from raw experience without a model

of the environment. Also, TD learning assumes that it up-

dates observed data based in part on prior knowledge, with-

out waiting for a final outcome. TD methods also assume

that events of the environment are recurring. These sat-

isfy the properties of on-line planning described in section

2. This section presents the way to exploit those elements

in the on-line evolution process. The process consists of

five phases: detection, planning, execution, evaluation, and

learning phases.

3.4.1 Detection Phase

In the detection phase, the system monitors the current state

of the environment where the system operates. When de-

tecting states, the system uses the notation presented in Sec-

tion 3.1. Continual detection may cause performance degra-

dation. Thus, it is crucial to monitor the change which ac-

tually triggers the adaptation of the system. Architecture

information is not suitable for the purpose because it does

not reflect environmental changes and it is changed only by

the system. Also long-term states are not feasible because

they are only the result of environmental changes instead

of the cause. Situations can be appropriate triggers because

they describe moments that the system needs adaptation. If

a situation is detected, then the system observes long-term

states and the current architecture of the system, and de-

notes them into the representation presented in 3.1. These

data are passed to the next phase: the planning phase.

3.4.2 Planning Phase

Using the state identified by the detection phase, the system

chooses an action to adapt itself to the state. At this time,

the system uses an action selection strategy. In general, Q-

learning uses ‘ε-greedy’ selection strategy as an off-policy

strategy to choose an action from the admissible action set

A(s) of the current state s. The strategy is a stochastic pro-

cess in which the system exploits prior knowledge or ex-

plores a new action. This is controlled by a value ε deter-

mined by the developer, where 0 ≤ ε < 1. In this phase, the

system generates a random number r. If r < ε, the system

chooses an action randomly from the admissible action set.

Otherwise(r > ε), it chooses the best-so-far action by com-

paring the value of each action accumulated in the learn-

ing phase(see Section 3.4.5). In this manner, the stochastic

strategy prevents the system from falling local optima. The

chosen action is used by the execution phase.

3.4.3 Execution Phase

This phase applies the action, which is chosen in the previ-

ous phase(planning phase), to the system. As the action de-

scribes architectural changes such as adding, removing, re-

placing components, and reconfiguring architectural topol-

ogy, the system must have architecture manipulation facil-

ities, i.e. dynamic architecture. Also, it must support the

way to make a quiescent state[6]. The quiescent state2 in ar-

chitectures represents that the system(or part of the system

which are relevant to the changes described by the action)

is safe to execute architectural reconfiguration. If the action

is not executed in the quiescent state, it may cause unsafe

changes which can lead to a malfunction.

Once reconfiguration is done, the system carries out its

own functionalities by using its reconfigured architecture.

The system keeps executiing until it encounters a new sit-

uation or it terminates. Although this may overlap with

the detection phase, the detection in this phase indicates a

phase transfer from this phase to the next phase(the detec-

tion phase of course uses this detected situation).

3.4.4 Evaluation Phase

After the execution phase, the system must evaluate its pre-

vious execution by observing a reward from the environ-

ment. As mentioned in section 3.2, the system continuously

observes values previously defined by the fitness function.

These values will be used for calculating the reward of the

action taken. The values must be retrieved immediately.

Otherwise, in other words, if the system is delayed in re-

trieving reward values, it may influence the performance or

2The term ‘state’ is different from the term mentioned in Section 3.1.

In this context, the state indicates the execution state of the software archi-

tecture
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Figure 3. Examples of applying the on-line

evolution process.

quality of the learning phase. Hence, the system must have

facilities to observe the values immediately. The observed

values are passed to the next phase: the learning phase.

3.4.5 Learning Phase

In this phase, the system accumulates the experiences which

represent the previous execution described in section 3.4.3,

by using the reward observed in the evaluation phase. This

phase directly uses Q-learning. The key activity of Q-

learning is updating Q-values. This update process is de-

picted in equation (4),

Q(st, at) = (1−α)Q(st, at)+α[rt+1+γmaxaQ(st+1, a)]
(4)

where 0 ≤ α ≤ 1 and 0 < γ ≤ 1. α is a constant step-

size parameter and γ is a discount factor. This update equa-

tion accumulates the result of the previous execution based

on the current state, the chosen action, and the observed

reward. This technique composites the current experience

upon the previous experience. The term (1 − α)Q(st, at)
represents the value the system already knows and its

weight for accumulation where α controls the weight. On

the other hand, the term α[rt+1 + γmaxaQ(st+1, a)] rep-

resents the current reward and the expectation of the greedy

action of the newly observed state where α controls the

term’s weight and γ controls the weight of the greedy ac-

tion. In this manner, the system can accumulate its expe-

rience by updating Q(st, at) = v where st is the detected

state, at is the action taken by the system at st, and v is the

value of the action on st. This knowledge will be used in the

planning phase(see section 3.4.2) to choose the best-so-far

action.

Examples that a system uses the above process are shown

in Figure 3. i): When a system encounters a new situa-

tion, the planner in the system chooses an arbitrary recon-

figuration action because there is no learning data about the

new situation. Then, The system reconfigures its architec-

ture based on the chosen action. During the system exe-

cutes its functionality, the evaluator the execution based on

the predefined fitness function and produces rewards. The

learner accumulates the rewards with respect to the prior

situation (planning model construction). ii): When the sys-

tem encounters an already experienced situation, the plan-

ner exploits the best-so-far action based on learning data

(exploitation based on the previously constructed planning

model). After the execution of the reconfigured architec-

ture based on the best-so-far action, the evaluator produces

rewards. The rewards are used to reinforce current Q-values

(model reinforcement). When the environment changes, the

current Q-values are not appropriate the changed environ-

ment. Hence, the system must try actions with respect to

situations and accumulate rewards and reinforce Q-values

to adapt the changed environment (model updating).

With these facilities discussed through section 3, the

approach supports software developers to construct self-

managed software with on-line planning based on Q-

learning. The next section shows the result of a case study

which applies the approach to a robot simulator.

4. Case Study

This section reports on a case study which applies our

approach to an autonomous system. The environment in

this case study is Robocode[8] which is a robot battle sim-

ulator. Robocode provides a rectangular battle field where

user-programmed robots can fight each other. It also pro-

vides APIs(Application Programming Interfaces) for robot

design. A robot consists of a radar, gun, and body. The radar

is responsible for locating enemy robots on the battlefield.

It indicates the location of an enemy robot by providing a

distance and a relative angle. The gun fires a bullet to a

enemy robot. It can control the power of the bullet, but a

more powerful bullet may cause a longer cooling time. The

body contains a radar, a gun, and two wheels. By giving

speed values to the wheels, the robot can move around in the

battlefield. Basically, Robocode only provides templates to

build a robot. Robot developers should construct software

systems for their robots. In general, developers make firing,

targeting, and maneuvering functionalities to build a robot.

The reason why we chose Robocode is that it can pro-

vide a dynamically changing environment and enough un-

certainty, as well as being good for testing self-managed

software with on-line planning. In particular, it is hard to

anticipate the behavior of an enemy robot prior to run-time.

Also, several communities provide diverse strategies for fir-
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Figure 4. Scores of ‘A Robot’ which has pa-

rameters: α = 0.3, γ = 0.7, ε = 1.0. ε = 1.0 in-
dicates the robot always randomly choose an

action in the presence of any situation. (i.e.

exploration only)

ing, targeting, and maneuvering. These offer opportunities

to try several reconfiguration with respect to various situa-

tions.

The rest of this section presents a robot design which

applies our approach. The design includes representations,

fitness functions, and operators for the robot. Also this sec-

tion presents the result of the evaluation which shows the

effectiveness of our approach.

4.1. Robot Implementation

To verify the effectiveness of the proposed approach, we

implemented a robot with dynamic architecture. This robot

can try lots of firing, targeting, and maneuvering strategies

by changing its software architecture. Also, we identified

situations, states, actions, fitness functions, and operators

based on our approach. The detailed description of robot

implementation is provided in Appendix A.

4.2. Evaluation

This section shows the effectiveness of the approach by

presenting the result of robot battles in Robocode. Two

experiments are conducted in this research. Learning data

were initialized at the beginning of every experiment except

the second experiment.

The first experiment was conducted to compare the ap-

proach with random action selection (i.e. random adap-

tation) which is one of generic evaluation criteria for

metaheuristics[7] and to verify whether our planning ap-

proach can generates plans without an initial model of the

environment. We chose a robot named ‘AntiGravity 1.0’ as

the enemy. This robot has an anti-gravity algorithm which

enables the robot to move as it has a reverse gravity engine.

In other words, the algorithm supposes that the wall of the

battlefield and other robots have gravity. Thus, the robot

keeps enough distance between the wall3 and other robots.

The robot (‘AntiGravity 1.0’) is known for its good perfor-

mance in battles with many other robots, in Robocode com-

munities. For convenience, the robot described in Section

4.1 will be denoted by ‘A Robot’ and ‘AntiGravity 1.0’ will

be denoted by ‘B Robot’.

The result of the battle, in which ‘A Robot’ with ran-

dom action selection (ε = 1.0 indicates the robot chooses

actions randomly whenever the system monitors any situa-

tion. This means the robot repeats case i) in Figure 3 with-

out exploiting prior experience) fought with ‘B Robot’, is

shown in Figure 4. We carried out one hundred rounds, and

observed scores after every ten rounds. Each score consists

of a survival bonus (70 points), and bullet damage points.

Scores satisfy the goals of the robots, ‘Eliminate the enemy’

and ‘Maximize my energy’, by surviving in the battle field

(which offers a survival bonus) and satisfy ‘Minimize the

enemy’s energy’ by hitting the enemy with bullets (which

offers bullet damage points).

The result shown in Figure 4 indicates that the robot with

random action selection does not adapt to the environment

(i.e. the enemy robot) even though it slightly outperforms

‘B Robot’. The regression line which represents the perfor-

mance of ‘A robot’ in Figure 4 does not increase because the

robot cannot exploit prior experience to find better config-

urations (i.e. no planning model construction). Hence, the

robot cannot make effective plans. This indicates a planner

is needed to effectively adapt to a modeless environment.

On the other hand, the scores of ‘A Robot’, which has the

on-line planning capability (i.e. 0.0 < ε < 1.0 means the

planner in the robot can exploit prior experience as depicted

in Figure 3 case ii)), gradually increases as depicted in Fig-

ure 5. Also, the robot outperforms ‘B Robot’. This indicates

that the approach enables the robot to, at least, learn its envi-

ronment and enhance its performance at run-time. In detail,

the robot randomly chooses actions in the early stage of the

battle as depicted in Figure 3 case i) (exploration). As the

rewards of prior actions are accumulated (model construc-

tion), the robot can exploit accumulated knowledge to make

a plan as shown in Figure 3 case ii) (exploitation). Con-

sequently, the result depicted in Figure 5 shows the robot

can actively explore better solutions by using the reinforce-

ment learning-based planner in the presence of dynamically

changing environments.

The second experiment was conducted to verify the ef-

3When a robot is hit by wall, it causes energy reduction.
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Figure 5. Scores of ‘A Robot’ which has pa-

rameters: α = 0.3, γ = 0.7, ε = 0.5. ε = 0.5
indicates the robot can make plans by using

prior knowledge in the presence of each situ-

ation. (i.e. the planner adjusts the proportion
of exploration and exploitation.)

fectiveness of on-line planning in self-management. In this

experiment, we used the learning data (Q-values) learned by

the robot, conducted in the previous experiment (which has

parameters α = 0.3, γ = 0.7, ε = 0.5). Using the data, ‘A

Robot’ which implements greedy selection (i.e. ε = 0.0
indicates the robot always exploits best-so-far actions in

the presence of any situation.) outperforms ‘B Robot’ con-

stantly as depicted in Figure 6.(a). However, when we in-

troduced a new robot (‘C Robot’ which has ‘Dodge’ strat-

egy), which means the environment changed, the robot with

same parameters (i.e. exploitation only = off-line planner)

cannot outperform the enemy as depicted in Figure 6.(b).

This indicates that the robot uses off-line planning and it

cannot adapt to dynamic environment changes. This shows

the limitation of off-line planning which uses a fixed model

for planning. To enable on-line planning, we changed ε to

0.5 and the result of the battle is shown in Figure 6.(c).

The result indicates that ‘A Robot’ can learn the behavior

of ‘C Robot’ and gradually outperform the enemy. This

indicates software systems which apply our approach can

search better solutions when it encounters new situations

from the dynamically changing environments. The two ex-

periments described in this section represent the effective-

ness of the approach described in Section 3 by showing

that the robot implemented by the approach can learn the

dynamically changing environment and outperform off-line

planning.
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Figure 6. (a) Exploitation only. The robot uses

the previously accumulated Q-values to fight

with the already experienced robot without
further learning. (b) Exploitation only. the

robot uses the Q-values to fight with a new

robot. In other words, the robot uses off-line
planning and it cannot adapt to dynamic en-

vironment changes. (c) Exploration and ex-

ploitation. In the early stages, ‘A Robot’ ran-
domly explores actions and accumulates re-

wards from the exploration. Then, the robot
exploits the knowledge learned to fight with

the new robot.

(a)

(b)

(c)
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5. Conclusions

Planning in architecture-based self-management repre-

sents how a system can find appropriate relationships be-

tween situations that the system encounters and possible

configurations that the system can take in dynamically

changing environments. The paper has discussed two types

of planning: off-line and on-line planning. On-line plan-

ning must be considered to deal with dynamically chang-

ing environments because off-line planning has limitation

which uses fixed relationships between situations and con-

figurations for adaptation. On the other hand, on-line plan-

ning enables a system to autonomously find better relation-

ships between them in dynamic environments. This paper

has described an approach to designing architecture-based

self-managed systems with on-line planning based on Q-

learning. The approach provides a discovery process of

representations, fitness functions, and operators to support

on-line planning. The discovered elements are organized

by an on-line evolution process. A case study has been con-

ducted to evaluate the approach. The result of the case study

shows that our approach is effective for architecture-based

self-management.

A Robot Implementation

Due to space limitation, we provides an addi-

tional material about robot implementation on this URL:

http://seapp.sogang.ac.kr/robotimpl.pdf
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