SHAGE: A Framework for Self-managed Robot Software

Dongsun Kim, Sooyong ParkJr
{darkrsw, syparkj@sogang.ac.kr

Youngkyun Jin, Hyeongsoo Chang
{iiny1u, hschang}@sogang.ac.kr

Department of Computer Science, Sogang University, Mapo-Gu, Seoul, Republic of Korea

Yu-Sik Park, In-Young Ko
Information and Communications University
Yuseong-gu, Deajeon, Republic of Korea

{yusikpark, ikoy@icu.ac.kr

Kwanwoo Lee
Hansung University
Sungbuk-gu, Seoul, Republic of Korea

kwlee@hansung.ac.kr

Junhee Lee, Yeon-Chool Park,
Sukhan Lee
Sungkyunkwan University, Suwon, Gyeonggi-do,
Republic of Korea
leejunhee@ece.skku.ac.kr,
fearhope@gmail.com,
Ish@ece.skku.ac.kr

ABSTRACT

Behavioral, situational and environmental changes in com-
plex software, such as robot software, cannot be completely
captured in software design. To handle this dynamism, self-
managed software enables its services dynamically adapted
to various situations by reconfiguring its software architec-
ture during run-time. We have developed a practical frame-
work, called SHAGE (Self-Healing, Adaptive, and Grow-
ing SoftwarE), to support self-managed software for intelli-
gent service robots. The SAHGE framework is composed of
six main elements: a situation monitor to identify internal
and external conditions of a software system, ontology-based
models to describe architecture and components, brokers
to find appropriate architectural reconfiguration patterns
and components for a situation, a reconfigurator to actu-
ally change the architecture based on the selected reconfig-
uration pattern and components, a decision maker/learner
to find the optimal solution of reconfiguring software archi-
tecture for a situation, and repositories to effectively man-
age and share architectural reconfiguration patterns, com-

*This research was performed for the Intelligent Robotics
Development Program, one of the 21st Century Frontier
R&D Programs funded by the Ministry of Commerce, In-
dustry and Energy of Korea.

TTo whom all correspondence should be addressed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SEAMS’06, May 21-22, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

79

ponents, and problem solving strategies. We conducted an
experiment of applying the framework to an infotainment
robot. The result of the experiment shows the practicality
and usefulness of the framework for the intelligent service
robots.

Categories and Subject Descriptors
D.2.11 [Software Architecture]: Patterns

General Terms
Design

Keywords

Self-managed Software, Software Architecture, Robot Soft-
ware

1. INTRODUCTION

To deal with dynamic behavior, situations and environ-
mental changes at run-time, current software engineering
practices are not adequate due to the hardness of software
modification. An approach to resolve this problem could
be making software really “soft” that enables run-time soft-
ware modification. Even though the current paradigm for
software development aims at making software more modifi-
able. Especially in embedded systems such as robots, there
is a lot of needs for changing its functionalities at run-time,
even though there is no software architecture in it.

This research is currently being conducted as part of the
‘intelligent service robot for the elderly’ project in the Center
for Intelligent Robotics (CIR) at the Korea Institute of Sci-
ence and Technology (KIST). This project was faced with
‘how to satisfy changing requirements more faster at run-
time’. For example, navigation is one of the most important

Repository Manager

Ontology Repository

Ontology Repository

Environment
current situation
Observer

Human
Evaluator

immed. rewards

<< external >>

<< internal >>

Architecture Broker

S,

%,
o, Candidate Architbctures CompomentURls AN
&, e %,
Sty Selected Afchitecture Compoment-URI /g \ 7%
Vo N
e

—_——

Decision Maker & Learner

<< external >>

Component Repository

<< internal >>

Component Repository

\:eavch

Compoment-URIs

scavV

©

Broker

Reconfigurator

!

Reconfiguration

Learning Data

Target S/W Architecture

Figure 1: SHAGE Framework consists of two parts; the inner part has seven modules: the Monitor(not in our
scope yet), the Architecture Broker, the Component Broker, the Decision Maker, the Learner, the Recon-
figurator, and (internal) Repositories. The outer part consists of repository servers that provide repository

services

functions in robot systems. Usually, the user of a robot
commands to move with only a goal position. But situa-
tions can be diverse; a) when the user held a party, there
may be many persons. They are unrecorded and moving
objects for the robot. In this case, the robot needs to move
more carefully, even though it may be getting slow. b) when
the user is home alone, there are only recorded objects. In
this case, the robot can move more quickly. In both cases
a) and b), the user only put the goal position to the robot
and would not give more details such as ‘move carefully’,
‘there’s lots of persons’, ‘I don’t care a bit of collisions’ and
so on(of course, the user can notice ‘what’s the problem’
when the robot encounters some unidentifiable situations
but basically, he wouldn’t give details of an operation be-
fore the robot executes the operation). Thus, the robot must
recognizes situations of the environment and infers the user’s
requirements to adapt its behavior. In addition to adapta-
tion, the robot should not repeat previous experience which
returns bad rewards. To do this, the robot must learn and
memorize situations.

In this paper, we propose a framework to implement self-
managed software in Section 2. In Section 3, we show the
results of a case study conducted in a robot. Then, we draw
conclusion in Section 4.

2.

2.1 Framework Overview
SHAGE! Framework is developed to give a self-managed

SHAGE FRAMEWORK

'formerly it was AlchemistJ as described in [1]

80

software capability to robot software in the project. The
Framework consists of two parts which are separated by a
dashed line as depicted in figure 1. The inner part is in-
stalled each robot and consists of seven modules. The outer
part provides repository services for robots to obtain new
knowledge which describes ‘how to adapt’. The environ-
ment and the user are not part of the framework but the
framework continuously communicates with them to decide
‘when to adapt’ and ‘how to adapt’. The target architec-
ture represents the software architecture of the robot and
the target of adaptation.

Seven modules in the inner part of the framework are the
Monitor(not in our scope yet), the Architecture Broker, the
Component Broker, the Decision Maker, the Learner, the
Reconfigurator, and the Internal Repositories. The monitor
is responsible for observing the current situation of the envi-
ronment(this is what observer does) and evaluating the re-
sult of adaptation that the framework does(this is what eval-
uator does). The architecture broker searches candidate ar-
chitectures based on architecture reconfiguration strategies
and composes candidate component compositions for the se-
lected architecture by using concrete component retrieved by
the component broker. The component broker finds concrete
components which will be arranged into an architecture and
retrieves the components from repositories. The decision
maker determines an best-so-far architecture from a set of
candidate architectures that the architecture broker found
and an best-so-far component composition from candidate
component compositions that the architecture broker com-
posed. The learner accumulates rewards evaluated by the

evaluator in the monitor and the decision maker uses these
accumulated rewards to choose the best-so-far architecture
and the best-so-far component composition. The learning
data is a knowledge repository for the learner. The recon-
figurator manages and reconfigures the software architec-
ture of the robot based on the best-so-far architecture and
the best-so-far component composition which are selected
by the decision maker. The internal repositories consists
of the ontology repository and the component repository.
The ontology repository contains architecture reconfigura-
tion strategies that describes functionalities the robot must
have and component ontologies that describes characteris-
tics of a component. The component repository contains
components implemented to be used in the robot software
architecture.

The outer part of the framework is a set of servers con-
taining external repositories. Each server has an ontology
repository and a component repository as the inner part has.
Internal repositories in the robot requests new ontologies
and components when the robot cannot adapt its behavior
to the current situation properly. Also External repositories
broadcasts new knowledge to update robots’ internal repos-
itories globally. The repository manager is installed in each
server and has tools for addition and removal of ontologies
and components.

The framework is activated when the monitor detects a
new situation from the environment or receives a new re-
quirement from the user. When the observer in the monitor
detects a situation which needs software architectural adap-
tation, the monitor issues adaptation with the observed cur-
rent situation to the architecture broker(start Adaptation(IS-
ituation s)) as described in figure 4. The architecture broker
requests the current architecture of the robot(getCurrent-
Arch()) to search a set of suitable architecture reconfigura-
tion strategies from the internal ontology repository(search-
Arch()). Then, the architecture broker asks the decision
maker to select the most suitable software architecture of the
robot(called an best-so-far architecture) based on the set of

architecture reconfiguration strategies(select Arch(ArchSet set)).

Once the decision maker returns an best-so-far architec-
ture, the architecture broker requests a set of suitable com-
ponents for the architecture from the internal component
repository(getComponentSet()). The component broker re-
trieves binary code and information of components from (in-
ternal/external) component repositories(getComponent()).
After receiving components from the component broker, the
architecture broker composes compositions by using the re-
trieved components to fill the selected architecture and asks
an best-so-far component composition to the decision maker.
Then, the architecture broker passes the selected architec-
ture and the selected component composition to the re-
configurator(ReconfigurArch()). The reconfigurator adds,
removes, and changes components of the current software
architecture and makes connections between components.
When the reconfigurator reports completion of reconfigu-
ration, the architecture broker reports that ‘adaptation is
done’ to the monitor. Then, the evaluator in the monitor
begins to examine the behavior of the robot for a while. If
the monitor detects the next situation the evaluator passes
rewards of the behavior to the learner. The learner accumu-
lates rewards for the decision maker to use afterwards.

The above cycle is the process of the framework. The next
sections describes each modules in the framework in detail.

81

FRVRNED

Reconfiguration strategy
(Add abstract component C)

al:A b1:B coL
al:A b1:B
—{
ADL
Abstract Level W c1:C
ADL
‘a1:A EP abstract Component instance Level
Figure 2: Architecture reconfiguration in an ab-

stract level and component level

2.2 Architecture Broker

The architecture broker finds appropriate architecture-
reconfiguration strategies when a robot needs to reconfig-
ure its software architecture to overcome a problematic sit-
uation. The robot may need to add, remove or replace a
component of its software architecture to provide a capabil-
ity that can handle the problem. The software reconfigura-
tion process is composed of two phases as shown in figure
2. While the architecture broker is in charge of software
reconfiguration in an abstract level, the reconfigurator ac-
tually reconfigures the robot software architecture based on
the abstract reconfiguration strategy and by using the com-
ponents selected by the component broker (see Section 2.3).
The purpose of fig:brokering making the software reconfigu-
ration in two different levels is to make all possible candidate
components be evaluated and utilized (will be explained in
detail in Section 2.5).

The architecture broker searches architecture reconfigura-
tion strategies based on the situation detected by the mon-
itor. A reconfiguration strategy is described in XML as
shown in figure 3. An XML-based architecture-reconfiguration
description includes the URI of an abstract component to be
changed, and the required functionality (specified by a URI
that represents a functional ontology) of a new component
to be added. Based on this reconfiguration strategy, the
architecture broker requests a set of component instances
that provide the required functionality to the component
broker. The architecture broker finally delivers the selected
components with the reconfiguration operations to the re-
configurator.

2.3 Component Broker

The component broker searches appropriate software com-
ponents for solving a situation. In our previous research [2,
3], the component broker infers candidates software com-
ponents based on the situation, strategy, and component
ontologies. The role of the component broker has been ex-
tended to searching components that fit to a target software
architecture.

The following are the steps to find a component by the
component, broker. At first, upon the architecture broker’s
request on necessary components for reconfiguring software
architecture, the component broker searches for the candi-

<?xml version="1.0" 7>
<reconfiguarationdescription name="http://sembots.icu.ac.kr/reconf#ToVisionbasedLocalization">
<description>
Change the current robot architecture into vision based Localizer
</description>
<profile>
<required slotName="http://sembots.icu.ac.kr/service#Localizer"
action="http://sembots.icu.ac.kr/action#Replace"/>
<required slotName="http://sembots.icu.ac.kr/service#MapBuilder"
action="http://sembots.icu.ac.kr/action#Remove"/>
</profile>
<configuration>
<script>
<Replace slotName="http://sembots.icu.ac.kr/service#Localizer">
<services>
<service name="http://sembots.icu.ac.kr/service#VisionbasedlLocalization"/>
<service name="http://sembots.icu.ac.kr/service#VisionbasedMapBuilding'/>
</services>
</Replace>
<Remove slotName="http://sembots.icu.ac.kr/service#MapBuilder"/>
</script>
</configuration>
</reconfiguarationdescription>

Figure 3: An example of an architecture reconfigu-
ration description

date components that provide the functionality specified in
the architecture reconfiguration description. If the compo-
nent broker cannot find any candidate components in the in-
ternal component repository, or the decision maker decides
that there is no appropriate component among the selected
candidates, the component broker requests the component
acquisition engine to search and collect components from ex-
ternal component repositories (see Section 2.6 for details).

The brokering processes of the architecture broker and the
component broker are depicted in figure 5.

1. Based on the situation information received from the
monitor, a situation ontology is inferred.

2. The architecture broker searches an architecture-recon-
figuration description (defined as an ontology) that is
associated with the situation ontology.

3. The architecture broker extracts an architecture-recon-
figuration procedure from the selected architecture-
reconfiguration description.

4. The architecture broker comprehends the required func-
tionality of the components included in the architecture-
reconfiguration description, and requests them to the
component broker.

5. The component broker infers appropriate components
based on their functionality represented in a function
ontology.

2.4 Decision Maker & Learner

To decide and learn which software component is suit-
able for the current situation, we employed a variant of
CBDT(Case-based Decision Theory) [4] introduced by Gilboa
and Schmeidler [5].

CBDT is motivated by the ideas from the well-known
case-based reasoning (CBR) [6] and reinforcement learning [7]
in the machine learning literature; the “similar” problems
have “similar” solutions and a learner can improve his learn-
ing by the feedback of his decision based on trial-and-error
performance evaluation. CBDT chooses an action (i.e., soft-
ware component configuration) based on the performance of
potential actions in previous problems that are similar to
the current one.

CBDT suffers from the cases where the values of similar-
ity measure between problems are pretty low. To get away

82

&C
Ontology

Ontology

Ontology

relaxation relaxation

Situation
[Information|

Reconfiguration
Description (1->2)

e
i

legend
@ : schema

: instance

Figure 5: Architecture/component brokering pro-
cesses

with this problem, the idea of “satisficing” (satisfice = sat-
isfy + sacrifice) decision making [8][4] has been introduced.
A threshold is employed and the decision maker explores the
actions in A if the linear combination of the benefits expe-
rienced so far for the best action is lower than the threshold
until it finds an action that gives a bigger value than the
threshold. Still, even with the threshold strategy, CBDT
does not guarantee that the selected action is an optimal
action for the current problem.

We incorporated e-greedy exploration-exploitation strat-
egy from reinforcement learning into CBDT to tackle down
the sub-optimality problem. If the value of the weighted
sum of the best action is lower than the threshold, an action
in A that have not been tried so far is selected uniformly. If
not, with probability €, an action in the set of actions in A
that have not been tried so far is selected uniformly (explo-
ration) and with probability 1 — €, the decision maker takes
the current best action (exploitation).

2.5 Reconfigurator

The reconfigurator manages and re-organizes the software
architecture of the robot without suspension at run-time.
Reconfiguration of the software architecture is based on the
selected architecture reconfiguration strategies and the se-
lected component composition which are selected by the de-
cision maker. To enable run-time reconfiguration, SHAGE
framework defines some rules for designing software archi-
tecture.

Software architecture is defined by two levels; the abstract
level and the concrete level. At the abstract level, there are
only slots. A slot represents an abstract component that
describes services. A service describes functionality that a
slot should provide. A service does not indicates a specific
method or a concrete component but describes what mes-
sages a slot can be requested and what results a slot returns.
An architecture reconfiguration strategy only deals with re-
configuration of the abstract level as shown in figure 3.

At the concrete level, each slot is filled by a concrete
component. A concrete component is an executable code,
for example .class files in Java, implemented by predefined
component implementation rules. Every component in the
framework must implement common interfaces containing
messages such as ‘start’, ‘stop’, and ‘suspend’ and specific in-
terfaces containing messages that the component can receive
and give. These specific interfaces are described by the com-

| 1.2: selectCompasition

CompositionSet set) |

<<reij»
< 1.3t best=so-fadr compqsition

o

| Monitor I |ArchitectureBroker | | OntologyRepository | | ComponentBroker | I ComponentRepository | | DecisionMaker | | Learner | | Reconfigurator |
1: sta Adaptat'\on(\SituatiLn s) | |
I 1.1: getCurrentArch(l
| 1.1.1: searchArch() | | | |
1.1.1.1: selectArgh(ArchSet set) | |
| o | |
| e — 11 _].-LJ..MQSI;SQ]MFTMMG T - |
| 1.1.2: getComponenlSet(List comList) | | | |
| | 1.1.2.1: getComponent | | |
| «retfirm» | |
" 1,.1.3: Caompponent set

| |1.4: ReconfigureArch(ArcH arch) |

1.4: done(ISituation

1.5 Recanfigured

«return»

} s !
| S

1.6.1: Ieam’mg(lSHuJﬁtion s, IRewad 1) |
I

1
| |
| |

Figure 4: The process of SHAGE Framework is composed of interactions mainly between the inner part of

the framework

<?xml version="1.0" encoding="euc-kr"?>
<Component>
<name>Navigator .Mapbui lder :LaserbasedMapbui lder</name>
<description>Laser sensor-based mapbuilder</description>
<thread value="false"/>
<language value="CPP"/>
<deployment value="MainSBC"/>
<location URI="navigator .mapbuilder . laserbasedmapbui lder .LaserbasedMapbui lder" />
<provided-interfaces>
<service type="Algorithmic.MapBuilding.LaserbasedMapBuilding"
name="MapBui 1der ">
<msg name='ReadMap'>
<reponse>
<arg name='Map'
type='Primitive.double[5001[500]' />
</reponse>
</msg>
<msg name='UpdateMap'>
<arg name='dRobotPos' type='Primitive.double[3]'/>
<reponse>
<arg name="'Map'
type='Primitive.double[5001[500]' />
</reponse>
</msg>
</service>
</provided-interfaces>
<required-interfaces>
</required-interfaces>
</Component>

Figure 6: An example of component description

ponent description language shown in figure 6. The compo-
nent description language is a XML-based language and de-
scribes required interfaces that contains messages that the
component can request to other components and provided
interfaces that contains messages that the component can
offer to other components.

When the architecture broker requests reconfiguration of

the robot software architecture, the reconfigurator re-organizes

the architecture based on the selected architecture reconfigu-
ration strategy and places components based on the selected
component composition and places connectors between com-

83

ponents based on the component descriptions. The reconfig-
urator measures mismatches between components and finds
suitable connectors. For example, two components have
been deployed in two different machines, the reconfigurator
selects a remote connector which enables remote communi-
cation such as RPC or RMI. After all components are con-
nected, the reconfigurator sends a ‘start’ messages to every
new component in the architecture and reports that recon-
figuration is done to the architecture broker.

2.6 Repositories

The repository system for storing and managing architecture-

reconfiguration descriptions and components is composed of
four main elements: a component repository, an ontology
repository, an external acquisition engine, and a component
retirement plan[9, 10]. The component repository stores the
physical components that are available in a domain. The
ontology repository stores and manages the three types of
ontology explained in Section 2.3. The external acquisition
engine contacts external repository systems and acquires on-
tologies and components that are needed to solve a problem
that couldn’t be solved by using internal components. The
component retirement plan is for deciding the components
in the internal repository to be removed or updated based
on the usage history and component revision information
received from external repository systems.

Figure 7 shows the repository architecture of our frame-
work. The external acquisition engine receives a request
from the architecture broker or the component broker, searches
and collects architecture reconfiguration strategies or com-
ponents from external repositories, and stores them into the
internal repository.

Internal
Ontology

Internal
Component

External
Component
Repository

[Component
Ontology |Upload
pload

External

Architecturg omponent | Optology
Broker 4 Architecture] Acquisition Repositos
st
Reques | cdues) Upload
[Component Request 7 External Ontology
[Componen] External | || Search
Component Acquisiti
Broker Notify cquisition Ontology Sub Set
Engine Y
" Architecture & Comp t acquisition h

Figure 7: Repository architecture for self-growing
robot software

eT——— " Ree ahgurato

Architecture Broker & Component Broker
[sitwation [][Fanction][mepository

Figure 8: A captured image of the experiment

3. EXPERIMENT

We conducted an experiment to show effectiveness of the
framework on a robot. The robot is a prototype of ser-
vice robots and named ‘infotainment robot’. This robot
has two SBC(Single Board Computer)s; one is called ‘Main
SBC’ and another is called ‘Vision SBC’. These two SBCs
are connected by an 100Mbps line. The Main SBC com-
municates with ‘two laser sensors(front and rear)’, ‘two IR
sensors(front and rear)’, and ‘two wheels(left and right)’
through RS-232C. The Vision SBC is dedicated for getting
visual data through two stereo vision cameras.

The experiment was designed as follows: 1. initially the
user of the robot needs ‘more faster navigation’, so the robot
is configured mainly to use faster sensors(say, laser sensors).
2. while moving, the robot is stuck by a table because the
bottom of the table is empty but the current sensors can de-
tect only knee height objects. Then, the user asks the robot
to move ‘more carefully’. 3. The robot tries to reconfigure
its software architecture to detect objects that the current
sensors cannot detect. We implemented a few components
and configured the initial software architecture of the robot
for navigation as shown in figure 9.(a). Each component
can be executed independently. ‘MotionControl’ compo-

nent controls wheels and ‘Localizer’ measures the current
position of the robot based on encoder data which means
how many degrees the wheels rotated. ‘MapBuilder’ makes
a map around the robot based on sensor data from laser sen-
sors. ‘PathPlanner’ plans a path from the current position
to a goal position based on data from ‘Localizer’ and ‘Map-
Builder’. ‘Coordinator’ gets the goal position from the user
of the robot and relays data between components. Based
on these components the robot can moves without collisions
except tables.

We designed a room as an experimental environment. we
placed two tables; one was covered by a tablecloth and the
other was not(shown in figure 8). The robot was placed at
the same line on which the two tables were placed. In other
words, “robot - table with a cloth - table without a cloth” on
the same line in sequence. After configuring the initial ar-
chitecture of the robot, The user put a goal position to ‘Co-
ordinator’ and requested ‘more faster maneuver’. The goal
position was between two tables and the robot verified that
the current architecture was suitable for the user’s require-
ment. The robot decided the initial architecture is enough
because laser sensors were very fast and precise. Then, the
robot started to move and its laser sensors could detect a
tablecloth, so the robot could move without collisions. This
was not an abnormal situation, so the robot did not need
adaptation. Then, we put the other goal position over the
second table. In this case, the robot could not detect the
table and rushed to the table. The user requested the robot
to stop and to realize the situation and to adapt it.

When the robot was requested to adapt its behavior, the
monitor in the framework detected the current situation.
This situation was passed to the architecture broker. The ar-
chitecture broker began the adaptation process as described
in sector 2.1. The situation was the current architecture
could not detect all object in the room so the robot needed to
find other functionalities to detect some other objects which
could not be observable with the current architecture. The
framework tried to apply architecture configurations includ-
ing various components such as SLAM(Simultaneous Local-
ization And Mapping) component(figure 9.(b)), IR-based
Path Planner Component(figure 9.(c)) and etc. But the
framework realized(and learned) these was not able to solve
the situation, and finally selected the architecture including
‘vision-based path planner’ component(figure 9.(d)). After
this experiment, we initialized the robot position and re-
peated the experiment. The robot learned the situation and
could overcome the situation without trial-and-error.

This experiment shows the framework enables the robot
to adapt its behavior by reconfiguring its software archi-
tecture. During (a)-(d) the user did not interrupt and put
more inputs. Although the monitor was not implemented
and feedback was specified by the user significantly, adap-
tation process after feedback was done automatically.

4. CONCLUSIONS

In this paper, we proposed the SHAGE framework as
self-managed software for the intelligent service robot do-
main. SHAGE offers main features to support self-managed
software at run-time: the situation monitor (not in our
scope yet), the architecture/component brokers, the deci-
sion maker/learner, the reconfigurator, and the repositories.
The framework observes the situation of the surrounding
environment of a robot and searches possible architecture

[Robot's Current Architecture o

<MotionControl> : [MainSBC] B <Coordinator> : [MainSBC] B <Localizer>
Novi Navi Navigsor.LocalizariL

s a

‘ <patPlanor : Hainss] ‘ ‘ WapBuldors : ansecy ‘

(a)

[Robot's Current Architecture o

<MotionControl> : [MainSBC] <Coordinator> : [MainSBC] SLocalizer>: VisionSBC]
e An

<PathPlanner> : [MainSBC]
Navigator PaihPlanner MapbasedPainFlanner

(b)

') Robot's Carrent Architecture]
<MotionControl> : [MainSEC] <Coordinator> : [MainSBC] D! ‘
‘ <PathPlanner> : [MainSBC] ‘ ‘ <MapBuildor> ; MainSBC] ‘
[Robaot's Current Architecture o

<MotionControl> : [MainSBC] <Coordin [MainSEC]

ator> : <Localiz
Navigator Local:
<PathPlanner>

Navigation

: VisionSBC]

‘ <MapBuilder> : [MainSBC] ‘

(d)

Figure 9: Various software architectures of the robot
during adaptation

reconfiguration strategies and component compositions that
are suitable for handling the situation faced. The framework
also allows the robot software system to choose the best-
so-far architecture reconfiguration strategy and component
composition during run-time based on previous experiences.

In order to verify the practicality of the framework, we
have adapted the SHAGE framework to an infotainment
robot and examined the adaptation capability of the robot
software. By reconfiguring the architecture, the infotain-
ment robot could successfully adapt its behavior (supported
based on software architecture) to an exceptional situation,
and continue its task.

85

S.

ACKNOWLEDGMENTS

The authors would like to thank Jeihun Lee at Sungkyunkwan
University, and Hyung-Min Koo and Ki-Hyeon Kim at In-
formation and Communications University (ICU) for their
helps in conducting the experiments in the present paper.

6.
[1]

[10]

REFERENCES

D. Kim and S. Park, “Alchemistj: A framework for
self-adaptive software,” in The 2005 IFIP
International Conference on Embedded And
Ubiquitous Computing (EUC’2005), LNCS3824,
pp- 98-109, December 2005.

H. Lee, H. Shin, I. Y. Ko, , and H. J. Choi, “A
semantically-based component selection mechanism
for robot software,” in 2005 Korean Conference on
Software Engineering, 2005.

H. Lee, H. J. Choi, and I. Y. Ko, “A
semantically-based component selection mechanism
for intelligent service robots,” in 4th Mexican
International Conference on Artificial Intelligence,
2005.

I. Gilboa and D. Schmeidler, “Case-based decision
theory,” Quarterly Journal of Economics, vol. 110,
pp- 605-639, 8 1995.

I. Gilboa and D. Schmeidler, “Case-based
optimization,” Games and Economic Behavior,
vol. 15, pp. 1-26, 1996.

J. Kolodner, Case-Based Reasoning. Morgan
Kaufmann, 1993.

R. S. Sutton and A. G. Barto, Reinforcement
Learning: An Introduction. MIT Press, 1998.

J. G. Marc and H. A. Simon, Organizations. Blackwell
Publishers, 1993.

H.-M. Koo and I.-Y. Ko, “A repository framework for
self-growing robot software,” in Proceedings of 12th
Asia-Pacific Software Engineering Conference
(APSEC2005), Taiwan, 2005.

H.-M. Koo and I.-Y. Ko, “A component repository
framework for self-growing robot software,” in the
82nd KISS Fall Conference, 2005.

