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Abstract. Two key concepts for architecture-based self-managed soft-
ware are flexibility and autonomy. Recent discussion have focused on
flexibility in self-management, but the software engineering community
has not been paying attention to autonomy as much as flexibility in
self-management. In this paper, we focus on achieving the autonomy of
software systems by on-line planning in which a software system can de-
cide an appropriate plan in the presence of change, evaluate the result of
the plan, and learn the result. Our approach applies Q-leaning, which is
one of the reinforcement learning techniques, to self-managed systems.
The paper presents a case study to illustrate the approach. The result of
the case study shows that our approach is effective for self-management.

1 Introduction

As software systems face dynamically changing environments and have to cope
with various requirements at run-time, they need the ability to adapt to the
environments and new requirements[1]. Increasing demands for more adaptive
software introduced the concept of self-managed software[2]. Self-management is
the means in which the software system can change its composition dynamically
without human intervention[3]. To achieve self-management, the system needs
to maintain a flexible structure and decide appropriate actions in the presence
of new situations. Therefore, flexibility and autonomy at run-time are the key
properties of self-management.

In this paper, we focus on achieving the autonomy of architecture-based
software systems because recent research already addresses the flexibility of
architecture-based software systems by using reconfigurable architectures[4,5].
Specifically, we apply an on-line planning approach to self-management to deal
with more autonomous behavior in self-management because the previous ap-
proaches so far to autonomy concentrate on designing an off-line planning process
where adaptation plans are designed at construction time[3].
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This paper proposes an Q-leaning[6]-based on-line planning approach to
architecture-based self-managed software. To support on-line planning in
architecture-based software, this approach presents several elements. Those are
(i) representations which describe the current state of a system and possible
actions that the system can take, (ii) fitness functions to evaluate the behavior
of a system, (iii) operators to facilitate on-line planning, and (iv) a process to
apply the previous three elements to actual run-time execution. We also present
a case study to verify the effectiveness of the approach.

The paper is organizedas follows.The next section gives a brief overviewof plan-
ning approaches to achieve autonomy in architecture-based self-managed software.
Section 3 presents our approach which consists of representation(Section 3.1), fit-
ness(Section 3.2), operators(Section 3.3), and an on-line evolution process(Section
3.4). Section 4 describes a case study conducted to verify the effectiveness of our
approach. Section 5 summarizes the contributions of the paper.

2 Planning Approaches in Architecture-Based
Self-management

2.1 Off-Line Planning

In architecture-based self-management, off-line planning means that decisions
which define the relationship between situations (the current state that a soft-
ware system encounters) and plans (i.e. architectural reconfiguration actions,
e.g. adding, remove, and replacing a component) are made prior to run-time. In
other words, whenever a system encounters a specific situation s from an envi-
ronment each time, the system selects and executes exactly one identical action
a. Solutions so far to self-managed systems focus on off-line planning[3]. For
example, plans are made by a maintainer through console or hard-coded by a
developer[4], components only can restart or reinstall itself when they encounter
abnormal states[7], architectural adaptation is described by mapping invariants
and strategies in ADL description[8], or architectural changes are triggered by
utility functions[5].

These off-line approaches can be effective if developers can identify well-
defined goals, states, actions, and rewards along with test environments that
exactly illustrate the characteristics of the actual operating environments before
deployment time. However, it is very difficult to identify them due to the na-
ture of planning[9] because, in real software development, developers make plans
with ill-defined goals, limited numbers of states, actions and partially observable
rewards, and test environments poorly describing real environments. On-line
planning, which gives more effective autonomy in self-management, presents an
alternative to overcome the limitation of off-line planning.

2.2 On-Line Planning

On-line planning in self-management software represents that a software system
can autonomously choose an action with respect to the current situation that
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the system encounters. Generally, an on-line planning process has three major
steps: selection, evaluation, accumulation[9,10]. In the selection step, the sys-
tem autonomously chooses an action which is suitable for the current situation.
Generally, the action is chosen by the greedy strategy in which the best-so-far
action is chosen. However, this strategy may lead to the problem of local optima.
Hence, the system must adjust its strategy between exploitation and exploration.

In the evaluation step, the system must estimate the effectiveness of the action
which is taken in the selection step. The key issue in the evaluation step is to
define the way to determine the numerical values which represent the reward of
the action because the numerical representation enables the accumulation and
comparison of the rewards.

In the accumulation step, the system stores the numerical values identified
in the evaluation step. The system must adjust the accumulation ratio between
already accumulated knowledge and newly incoming experience. If the system
uses accumulated knowledge too much in the accumulation step, it may slow
down convergence speed to optimal planning. On the other hand, if the system
uses new experience too much in the step, it may cause ineffective planning.

With these three steps, self-managed software can take advantage of on-line
planning in the presence of dynamically changing environments. The next section
describes how on-line planning can be applied to actual systems in detail.

3 Q-Learning-Based Self-management

This section presents an approach to designing self-managed software by ap-
plying on-line planning based on Q-learning. Generally, we need to consider
three elements to apply metaheuristics such as reinforcement learning, simulated
annealing, particle swarm optimization; those elements are ‘representation’, ‘fit-
ness’, and ‘operators’[11]. In reinforcement learning, the representations of states
and actions are crucial to shape the nature of the search problem. The fitness
function is used to determine which solution is better. The operators enable a
system to determine neighbor solutions which can accelerate the learning process.
Hence, the proposed approach provides state and action representations, fitness
function design, and operators to manipulate solutions. In addition to these three
elements, the approach provides an on-line evaluation process which describes
the control loop of the system at run-time.

3.1 Representation

The representations of states and actions are crucial for designing self-managed
software using on-line planning because they define the problem space (situa-
tions) and the solution space (architectures) of the system. Instead of intuitive
approaches, our approach provides a goal and scenario-based discovery process
for more systematic state and action discovery. Goal[12] and scenario-based
approaches[13] are widely used for the elicitation of software requirements. Also,
goal and scenario discovery have been studied[14].
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Table 1. Reformed goals and scenarios

Goal Scenario Condition(stimulus) Behavior(reaction)

Goal 1
Maximize
system
availability

Sc. 1-1 when the battery of
the system is low , turn off the
additional backup storage

Cond. 1-1 the battery
of the system is low

Beh. 1-1 turn off the
additional backup
storage

Sc. 1-2 . . . Cond. 1-2 . . . Beh. 1-2 . . .
Goal 2 . . . Sc. 2-1 . . . Cond. 2-1 . . . Beh. 2-1 . . .
. . . . . . . . . . . .
Goal n.m . . . Sc. n.m-1 . . . Cond. n.m-1 . . . Beh. n.m-1 . . .

The approach exploits goals and scenarios to discover states and actions.
Once goal and scenario structure[14] is organized, they can be mapped to states
and actions by reforming them. First, scenarios must be reformed into the pair
of ‘condition → behavior’ or ‘stimulus → reaction’, e.g. ‘when the battery of
the system is low(condition or stimulus), turn off the additional backup stor-
age(behavior or reaction)’. This reforming is depicted in Table 1. In this table,
the discovered goals are listed in sequence (goals will be used to discover fit-
ness functions as described in Section 3.2). The scenarios of a specific goal are
listed by the goal. Each scenario is reformed into two additional columns: Con-
dition(stimulus) and Behavior(reaction).

States are identified from the scenarios. Conditions in the scenarios can be
candidates of states. A condition represents a possible state of the system, e.g.
‘the system’s battery is low’ implies ‘low-battery’ or ‘the system’s battery is
full’ implies ‘full-battery’. A group of conditions represents a dimension(type)
of states, for example, ‘battery-level’ is a dimension of state information and it
can have value, either ‘low-battery’ or ‘full-battery’. While this information rep-
resents a long-term state of the environment, a situation represents a transient
change of the environment, e.g. ‘hit by wall’ in an autonomous mobile robot sys-
tem. Situations are triggers to begin the adaptation of the system. Situations can
also be identified from condition information. The condition, which describes a
transient event such as ‘when the system is hit by bullet’, can be transformed into
a situation. These two pieces of information(situation, long-term state) compose
the state information. An example of elements of state information is depicted
in the leftmost two columns of Table 2.

Actions can be identified by extracting behavior or reaction from scenarios.
As depicted in Table 1, a set of behavior(reactions) is identified in a pair of
conditions(or stimuli). If these pairs between conditions and reactions are fixed
before deployment time, it can be considered off-line planning, i.e. static plans.
The goal of this approach is on-line planning in self-management, the set of
actions should be discovered separately. Similar to state information, actions
can be identified by discovering action elements and grouping the elements into
a type. For example, first, identify action elements such as ‘stop moving’ or
‘enhance precision’. Then, group the elements which have the same type.
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Table 2. An example of state and action information

Situation
State(long-term) Action

Type Range Type Range

hit-by-wall distance {near, far} Movement {precise maneuver, stop, quick
maneuver}

hit-by-user battery {low, mid, full} GUI {rich, normal, text-only}

Examples of action elements and its type are shown in the rightmost column
of Table 2.An action element such as ‘rich’ in GUI or ‘stop’ in Movement, implies
architectural changes which include adding, removing, replacing a component,
and changing the topology of an architecture. Hence, each action must be mapped
with a set of architectural changes. For example, the action ‘(Movement=precise
maneuver, GUI=rich)’ can be mapped with a sequence of ‘[add:(visionbased
localizer), connect: (visionbased localizer)-(pathplanner), replace:
(normal gui) -by-(rich gui)]’ where (...) indicates a component name.

The discovery process shown in this section identifies states and actions by
extracting data elements from goals and scenarios. Because goals and scenarios
directly represent the objectives and user experiences and also they show how
the system influences the environment, state and action information can reflect
what the system should monitor and how the system should reconfigure its
architecture in the presence of environmental changes.

3.2 Fitness

The fitness function of the system is crucial because it represents the reward of
the action that the system chooses. Our approach exploits the goal and scenario
structure discovered in section 3.1. In particular, goals are the source of fitness
function discovery.

Generally, goals, especially higher ones including the root goal, are too ab-
stract to define numerical functions. Thus, it is necessary to find an appropriate
goal level to define the fitness function. It is difficult to define universal rules
for choosing appropriate goals which describe numerical functions of the system,
but it is possible to propose a systematic process to identify the functions. The
following shows the process to define the fitness function.

1. From the root goal, search goals which can be numerically evaluated by a
top-down search strategy.

2. If an appropriate goal is found, define a function that represents the goal
and mark all subgoals of the goal(i.e. subtree). Then, stop the search of the
subtree.

3. Repeat the search until all leaf nodes are marked.

More than one of the fitness functions can be identified by the discovery
process. In this case, it is necessary to integrate the functions into one fitness
function. The following equation depicts the integrated fitness function:
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rt = f(t) =
∑

i

wifi(t) (1)

where rt is the reward at time t, f(t) is the (integrated) fitness function, wi is
the weight of the i-th function, fi(t) is the i-th function of t, and

∑
i |wi| = 1.

Equation (1) assumes that the objective of the system is to maximize the values
of all functions fi(t). To minimize a certain value, multiply −1 to the weight value
of the function fi(t). Every function fi(t) corresponds to the observed data of
the system at run-time. For example, the observed network latency 100ms at
time t is transformed into 10 by the function fi(t) and multiplied by -1 because
it should be minimized.

3.3 Operators

Different metaheuristics use different operators. For example, genetic algorithms
use crossover and mutation. The reason why algorithms use operators is to ac-
celerate searching better solutions. In reinforcement learning, operators are used
to reduce the search space, i.e. the number of actions. Operator A(s) specifies
an admissible action set of the observed state s. For example, when a mobile ro-
bot collides with the wall, actions, which are related to motion control are more
admissible than those of arm manipulation. This operator is crucial because it
can reduce the training time (i.e. learning time) of the system.

3.4 On-Line Evolution Process

With three elements discussed through Section 3.1∼3.3, the system can apply
on-line planning based on Q-leaning. Q-learning[6] is one of temporal-difference
learning techniques which is a combination of Monte Carlo ideas and dynamic
programming ideas[15]. The reason why we choose Q-learning is its modeless
characteristic. This characteristic satisfies the properties of on-line planning de-
scribed in section 2.2. This section presents the way to exploit those elements in
the on-line evolution process. The process consists of five phases: detection, plan-
ning, execution, evaluation, and learning phases. The system can dynamically
adapt its architecture by executing these phases repeatedly.

Detection Phase. In the detection phase, the system monitors the current
state of the environment where the system operates. When detecting states, the
system uses the representation of states presented in section 3.1. Continual de-
tection may cause performance degradation. Thus, it is crucial to monitor the
change which actually triggers the adaptation of the system. Situations can be
appropriate triggers because they describe moments that the system needs adap-
tation. If a situation is detected, then the system observes long-term states and
the current architecture of the system, and denotes them into the representation
presented in 3.1. These data are passed to the next phase:the planning phase.

Planning Phase. Using the state identified by the detection phase, the system
chooses an action to adapt itself to the state. This phase is related to the selection
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step described in Section 2.2 because this phase tries to select an appropriate
architectural change with respect to the current situation of the environment. At
this phase, the system uses an action selection strategy. In general, Q-learning
uses ‘ε-greedy’ selection strategy as an off-policy strategy to choose an action
from the admissible action set A(s) of the current state s. The strategy is a
stochastic process in which the system exploits prior knowledge or explores a
new action. This is controlled by a value ε determined by the developer, where
0 ≤ ε < 1. When planning an action, the system generates a random number
r. If r < ε, the system chooses an action randomly from the admissible action
set. Otherwise(r > ε), it chooses the best-so-far action by comparing the value
of each action accumulated in the learning phase. In this manner, the stochastic
strategy prevents the system from falling local optima.

Execution Phase. This phase applies the action, which is chosen in the previ-
ous phase(planning phase), to the system. As the action describes architectural
changes such as adding, removing, replacing components, and reconfiguring ar-
chitectural topology, the system must have architecture manipulation facilities.
Once reconfiguration is done, the system carries out its own functionalities by us-
ing its reconfigured architecture. The system keeps executiing until it encounters
a new situation or it terminates.

Evaluation Phase. This phase is related to the evaluation step explained in
Section 2.2 because this phase determines numerical values which evaluate the
previous actions (architectural changes) which can be used by the accumula-
tion step (in our approach, the learning phase). After the execution phase, the
system must evaluate its previous execution by observing a reward from the en-
vironment. As mentioned in section 3.2, the system continuously observes values
previously defined by the fitness function. These values will be used for calcu-
lating the reward of the action taken.

Learning Phase. In this phase, the system accumulates (as explained in the
accumulation step in Section 2.2) the experiences obtained from the previous
execution, by using the reward observed in the evaluation phase. This phase
directly uses Q-learning. The key activity of Q-learning is updating Q-values.
This update process is depicted in equation (2),

Q(st, at) = (1 − α)Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)] (2)

where 0 ≤ α ≤ 1 and 0 < γ ≤ 1. α is a constant step-size parameter and γ is
a discount factor. In this manner, the system can accumulate its experience by
updating Q(st, at) = v where st is the detected state, at is the action taken by
the system at st, and v is the value of the action on st. This knowledge will be
used in the planning phase to choose the best-so-far action.

4 Experiment

This section reports on a case study which applies our approach to an au-
tonomous system. The environment in this case study is Robocode[16] which
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is a robot battle simulator. Robocode provides a rectangular battle field where
user-programmed robots can fight each other.

The reason why we chose Robocode is that it can provide a dynamically
changing environment and enough uncertainty, as well as being good for testing
self-managed software with on-line planning. In particular, it is hard to anticipate
the behavior of an enemy robot prior to run-time. Also, several communities
provide diverse strategies for firing, targeting, and maneuvering. These offer
opportunities to try several reconfiguration with respect to various situations.

Appendix A provides a robot design which applies our approach. The design
includes representations, fitness functions, and operators for the robot.

4.1 Evaluation

This section shows the effectiveness of the approach by presenting the result of
robot battles in Robocode.

An experiment was conducted to verify the effectiveness of on-line planning
in architecture-based self-management. In this experiment, we implemented a
robot based on our approach as described in Appendix A (the robot is denoted
‘A Robot’). Then, we trained the robot for a specific opponent robot (i.e. the
opponent robot is an environment of our robot ‘A Robot’). We chose a robot
named ‘AntiGravity 1.0’ as the opponent. The opponent (‘AntiGravity 1.0’) is
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Fig. 1. (a) Exploitation of the previously explored Q-values without further learning.
(b) Exploitation of the Q-values to a new robot. (c) Exploration of ‘A Robot’ in the
presence of the new robot. X-axis represents rounds that two robots have fought. Y-axis
represents scores that each robot obtained.



440 D. Kim and S. Park

known for its good performance in battles with many other robots, in Robocode
communities. ‘AntiGravity 1.0’ will be denoted by ‘B Robot’. Training is to apply
the on-line evolution process described in Section 3.4 to ‘A Robot’ in the battle
of two robots (‘A Robot’ and ‘B Robot’). This process made ‘A Robot’ learn
the behavior of ‘B Robot’ which is an environment of ‘A Robot’. After training,
we investigated the performance of ‘A Robot’ as shown in Figure 1. (a)1. The
result shows ‘A Robot’ outperforms ‘B Robot’ and this fact means the approach
can effectively make the robot learn the environment.

However, when we introduced a new robot(‘C Robot’ which has ‘Dodge’ strat-
egy), which means the environment is dynamically changed, the robot cannot
outperform the enemy as depicted in Figure 1.(b). This shows the limitation of
off-line planning. To enable on-line planning, we changed ε (epsilon) to 0.5 (which
means the robot can try new action with respect to the current situation with
50% probability) and the result is shown in Figure 1.(c). The result indicates
‘A Robot’ can gradually learn the behavior of ‘C Robot’ and finally outperform
the enemy. In other words, it can adapt to the new environment and change
its plans dynamically without human intervention. This indicates software
systems which apply our approach can autonomously search better solutions
when they encounters new situations from the environments. The experiment
described in this section represents the effectiveness of the approach described
in Section 3 by showing that the robot implemented by the approach can learn
the dynamically changing environment and outperform off-line planning.

5 Conclusions

Self-managed systems have the potential to provide foundation for systematic
adaptation at run-time. Autonomy in self-management is one of the key prop-
erties to realize run-time adaptation. To achieve autonomy, it is necessary to
provide a planning process to the system. The paper has discussed two types
of planning: off-line and on-line planning. On-line planning must be considered
to deal with dynamically changing environments. This paper has described an
approach to designing architecture-based self-managed systems with on-line
planning based on Q-learning. The approach provides a discovery process of rep-
resentations, fitness functions, and operators to support on-line planning. The
discovered elements are organized by an on-line evolution process. In the process,
the system detects a situation, plans courses of action, executes the plan, eval-
uates the execution, and learns the result of the evaluation. A case study has
been conducted to evaluate the approach. The result of the case study shows
that on-line planning is effective for architecture-based self-management. In par-
ticular, on-line planning outperforms off-line planning in dynamically changing
environments.
1 epsilon=0.0 in Figure 1 indicates ε = 0.0 in Equation 2. In other words, the robot

does not learn the environment no more and Q-value updating converges to best-
so-far actions. alpha and gamma indicate a constant step-size parameter (α) and
discount factor (γ) and the role of each variable is described in [6,15].
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A Robot Implementation

Due to space limitation, we provides an additional material about robot imple-
mentation on this URL: http://seapp.sogang.ac.kr/robotimpl.pdf.
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